A Monte Carlo technique for the Wigner-Boltzmann equation

Jean Michel Sellier, Bulgarian Academy of Sciences, IICT, Sofia

jeanmichel.sellier@gmail.com

Topics

- What is a semiconductor device? What is the physics involved?
- The Wigner-Boltzmann equation
- 1D Results
- 2D Preliminary results

What REALLY is a semiconductor material

• A semiconductor material, at the atomic level, is simply an highly ordered arrangement of atoms (or molecules) known as lattice.

- An electron moves as a free particle with an effective mass.
- An electron scatters with the phonons, the bigger the temperature, the more it scatters.
- An electron is subject to an eventually applied electric field.

Examples of semiconductor devices

The problem of Quantum Effects

- When device dimensions are reduced, quantum effects start to appear.
- Particles can tunnel through barriers, energies are discretized.
- The behavior of an electron is more similar to a wave than to a particle.

The Wigner-Boltzmann equation

The equation is recovered by the Wigner equation where the scattering term is the Boltzmann one.
C(= i - i) - 1

$$\frac{\partial f_{W}(\vec{r},\vec{k},t)}{\partial t} + \frac{1}{\hbar} \nabla_{\vec{k}} \varepsilon(\vec{k}) \nabla_{\vec{r}} f_{W}(\vec{r},\vec{k},t) = Q f_{W}(\vec{r},\vec{k},t) + \left[\frac{\partial f_{W}}{\partial t}\right]_{collision}$$

• where

$$Qf_{W}\left(\vec{r},\vec{k}\right) = \int d\vec{k} V_{W}\left(\vec{r},\vec{k}-\vec{k'}\right) f_{W}\left(\vec{r},\vec{k'}\right)$$
$$V_{W}\left(\vec{r},\vec{k}\right) = \frac{1}{i\hbar(2\pi)^{d}} \int d\vec{r'} e^{-i\vec{k}\cdot\vec{r'}} \left(V\left(\vec{r}+\frac{\vec{r'}}{2}\right) - V\left(\vec{r}-\frac{\vec{r'}}{2}\right)\right)$$

Wigner equation in semi-discrete form

 Taking into account the fact that a semiconductor device has limited dimensions, it is possible to re-formulate the Wigner equation in a semi-discrete form.

$$\frac{\partial f_W(\vec{r}, M, t)}{\partial t} + \frac{\hbar}{m^*} M \Delta \vec{k} \nabla_{\vec{r}} f_W(\vec{r}, M, t) = \sum_{n=-\infty}^{+\infty} V_W(\vec{r}, n) f_W(\vec{r}, M - n, t)$$
$$V_W(\vec{r}, n) = \frac{1}{i\hbar} \frac{1}{L} \int_0^{L/2} d\vec{s} e^{-2m\Delta \vec{k} \cdot \vec{s}} \left(V(\vec{r} + \vec{s}) - V(\vec{r} - \vec{s}) \right)$$

• The phase space is discretized w.r.t. the pseudo-wave vector coordinates.

Wigner equation in integral form

• The semi-discrete Wigner equation can be reformulated in terms of an integro-differential equation.

$$f_{W}(\vec{x},m,t) - e^{-\int_{0}^{t} \gamma(\vec{x}(y))dy} f_{i}(\vec{x}(0),m) = \int_{0}^{\infty} dt' \sum_{m'=-\infty}^{+\infty} f_{W}(\vec{x}(t'),m',t') \Gamma(\vec{x}',m,m') e^{-\int_{t'}^{t} \gamma(\vec{x}(y))dy} \theta(t-t') \delta(\vec{x}'-\vec{x}(t')) \theta_{D}(\vec{x}')$$

• where

$$\gamma(\vec{x}) = \sum_{m=-\infty}^{+\infty} V_W^+(\vec{x},m) = \sum_{m=-\infty}^{+\infty} V_W^-(\vec{x},m) \qquad \vec{x}(t') = x - \frac{\hbar m \Delta \vec{k}}{m^*} (t-t')$$

 $\Gamma(\vec{x}(t'), m, m') = V_W^+(\vec{x}(t'), m - m') - V_W^+(\vec{x}(t'), m' - m) + \gamma(\vec{x}(t'))\delta_{m, m'}$

Mean value of a function

• Finally, using the fact that the adjoint equation of the integro-differential equation is a Fredholm integral equation of second type, one can show that:

$$\langle A \rangle(\tau) = \int_0^\infty dt \int d\vec{x} \sum_{m=-\infty}^{+\infty} f_W(\vec{x},m,t) A(\vec{x},m) \delta(t-\tau) = \sum_{i=0}^{+\infty} \langle A \rangle_i$$

• where (for example)

$$\langle A \rangle_0(\tau) = \int d\vec{x}' \sum_{m'=-\infty}^{+\infty} f_i(\vec{x}_i, m') e^{-\int_0^\tau \gamma(x_i(y))dy} A(x_i(\tau), m') \langle A \rangle_1(\tau) = \int_0^\infty dt' \int dx_i \sum_{m'=-\infty}^{+\infty} f_i(\vec{x}_i, m) e^{-\int_0^t \gamma(x_i(y))dy} \theta_D(x_1) \cdot \cdot \int_{t'}^\infty dt \sum_{m=-\infty}^{+\infty} \Gamma(x_1, m, m') e^{-\int_{t'}^t \gamma(x_1(y))dy} A(x_1(t), m, t) \delta(t - \tau)$$

Physical interpretation of the terms

One can give a physical interpretation of the terms <A>_i.
If one takes the first term of the series:

$$\left\langle A\right\rangle_{0}(\tau) = \int d\vec{x}' \sum_{m'=-\infty}^{+\infty} f_{i}(\vec{x}_{i},m') e^{-\int_{0}^{\tau} \gamma(x_{i}(y)) dy} A(x_{i}(\tau),m')$$

the interpretation is as follows.

A particle starts at x_i with momentum m' Δk at time 0. The exponent gives the probability that the particle remains on the trajectory, provided that the scattering rate is Υ .

Designing a new Monte Carlo algorithm

• Consider $\gamma(\vec{x}) = \sum_{m=-\infty}^{+\infty} V_w^+(\vec{x},m) = \sum_{m=-\infty}^{+\infty} V_w^-(\vec{x},m)$ as a particle generation rate.

The Wigner potential gives rise to the creation of two particles, one positive and one negative, and the sign carries the quantum information.

The new algorithm, visually

Wigner, an intuitive picture

time = 950 fs, # particles = 731

Results

- Benchmark test: particles in constant field
- 1D Wave packet tunneling through a barrier
- Wigner distribution function of a wave packet

Constant field

2D Preliminary results

• 2D delta function in pseudo-wave space

• 2D wav packet against a wall

Conclusions and Future works

- Quantum effects are now dominating but scattering is still important. It needs to be included in the previous simulation prototypes.
- 2D Transport needs to be investigated further.
- Self-consistent simulations. Coupling with Poisson equation to simulate real semiconductor devices.