
  

Variance reduction schemes 
for Monte Carlo estimators in 

global
illumination algorithms 

László Szécsi

Budapest University of 
Technology



  

Scope of this talk

• the rendering problem
– as an integral equation

• examples from our previous work
– how Monte-Carlo variance reduction 

techniques translate to better global 
illumination rendering algorithms

• overview
– instead of detailed analysis



  

The rendering problem

• Find the radiance toward the eye from 
surface element visible in pixels

L() =   w(’, ) L’(’) d’

L
L’

L”



  

Random walk

• Monte-Carlo integration

• Ray casting + directional sampling

L = E
w(’) L’ (’)

p(’)



  

Termination

• approximate incoming radiance with direct 
illumination only (next event estimate)

• connect light path to light source



  

GI rendering = 
light path generation 

imageVirtual
world



  

Efficiency issues

• Path space has high dimension
– Low discrepacy sampling: (quasi) Monte 

Carlo

• Concentrate on large contribution paths
– Importance sampling

• Computational cost of a single path
– Path reuse



  

Importance sampling

f
p

f

p

good bad

a few, but large f /p samplessimilar f /p samples

Estimate:  f(x) dx 1/M  f(xi)/p(xi)



  

Sample generation

integrand f

importance probability distribution p

cumulative probability distribution1
uniformly
distributed
random
numbers

0



  

Example 1

Light path termination

Russian Roulette



  

Roussian-roulette
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Terminal estimate

• Estimator is zero if the walk is not 
continued
– Variance increase

• Use some rough estimate instead
L

’

L

’



  

Terminal estimate

• Globally
– Power is multiplied after every reflection by 

the average albedo
– Total power in the scene is the sum of a 

geometric series

• Locally
– Cheap approximate radiance computation 

method



  

Results

Classic RR Improved RR

Up to 30% speedup



  

Local guess

• Finite element shooting walk algorithm
– negligible time cost

Classic RR Improved RR Terminal guess



  

Example 2

Spectral optimisation

for path termination



  

Spectral optimisation

• Red light arrives on 
green wall

• Blue light arrives on 
yellow plastic with 
white specular
– high diffuse albedo
– no diffuse reflection

?
high

albedo

?



  

Spectral optimisation

• Importance sampling
– keep estimator value constant

Scalar value Vector value

a w

s = a s =

L Lw

 L

L  w

L La



  

Spectral optimisation

Classic Spectral optimisation



  

Example 3

”Go with the Winners” in Path 
Tracing



  

Path tracing with Russian-
roulette

Problems:
• Little reuse
• Number of samples of n-bounce is proportional 
to the total contribution of n-bounce paths



  

Example: Russian roulette

mirror,
albedo = 1

diffuse
albedo = 0.25

env

env

env

2 rays

8 rays

Number of samples of n-bounce is proportional 
to the contribution of n-bounce paths

8 rays



  

Example: Go with the winners

mirror,
albedo = 0.5

diffuse
albedo = 0.25

1 ray
1 ray

env

env

env16 rays

Number of samples of n-bounce is proportional 
to the variance of n-bounce paths



  

Random path continuation

Continuation with 
the probability of 
the albedo

Russian-roulette Go with the winners

Continuation

Termination

Splitting

Number of children is
proportional to the 
anticipated error

fractional 
number
of children



  

Estimation of the anticipated 
error

env

env

envPotential of the
previous path 
segment

Albedo of 
the given 
point

Variance of 
the incoming 
radiance

Variance of 
the direction
(scattering)

Variance of the
radiance estimation
at a given direction

+
A

(s+1)2 B



  

Simulation results: 
Mona Lisa and a table

Russian roulette
2 million rays,  19 seconds

Go with the winners
2 million rays,  15 seconds



  

Simulation results:
Mona Lisa and a table

Russian-roulette 
10 million rays,  104 secs

Go with the winners
10 million rays,  76 secs



  

Example 4

Improved Indirect Photon Mapping 
with 

Weighted Importance Sampling



  

Weighted Importance Sampling

Integrand: f

Sampling 
density: p(x)

x

Target
density: g(x)

 f(xi)/p(xi)
       M

Classical Monte Carlo Estimate:

  f(xi)/p(xi)
  g(xi)/p(xi)

Weighted Monte Carlo Estimate:



  

Virtual light sources (instant 
radiosity, indirect photon mapping) 



  

Radiance estimate for 
virtual light sources

High contribution sample 
generated with relatively low probability



  

Application of Weighted Importance 
Sampling

y

x

Target g: 
the probability density of path tracing



  

Original indirect photon mapping (no direct illumination)

With weighted importance sampling (no direct illumination)



  

Example 5

A Simple and Robust 
Mutation Strategy for the 

Metropolis Light Transport



  

Metropolis Sampling

Integrand: f

1. Find I that mimics f

2. Find the normalization
    constant: b =  I dx

Sampling:
    Mutation/Acceptance
    

- arbitrary mutation  T(x y)
- carefully selected acceptance
  probability a(x y)

Importance: I

a(x y)=
I(x)·T(x y)

I(y)·T(y x)



  

Drawbacks of Metropolis

• Start-up bias
– Process only converges to the stationary state

• Correlated samples
– Increase the variance of the integral quadrature

• Number of samples in a pixel  I
– few samples for dark regions



  

Good mutation strategy

• Quickly forgets previous samples
• Reduces the correlation of samples

Small mutations are bad Large mutations can also be bad
around the peaks



  

Importance controlled mutation 
size

• Big mutations at unimportant regions and fine, 
small mutations at important regions

• Transform the domain to expand important 
regions and shrink unimportant regions and use 
uniform perturbations



  

Perturbing in the space of 
pseudo-random numbers 

• Transformation for free: BRDF sampling, 
lightsource sampling, Russian Roulette

Primary sample space



  

Mutating in the 
Primary Sample Space

u1, u3

u2, u4 , u6, u8

u5
u7, u9

 u11 

U=(u1 ,…)
u10

u12, u14

u16

Path space Primary sample space



  

Mutating in the 
Primary Sample Space

U=(u1 ,…)

Path space Primary sample space



  

Ergodicity: 
Large (independent) Steps

Importance=0

1. Small steps with peturbation
2. Large steps independently of the actual sample: plarge



  

Benefits of Large steps

• Ergodicity

• Sampling process forgets

• Reduces the start-up bias
• Can be used to compute the normalization 

constant b

• Sequence of large steps is a conventional 
random walk: Combination with Metropolis
– multiple importance sampling



  

Implementation

primary sample
space of random
numbers

path 
generation

adding 
the

contribution

random
number

generation

random
number

generation

adding 
the

contribution



  

Bidir path tracing      Metropolis

25 samples per pixel



  

Effects of large step probability

plarge=0.02 plarge=0.5 plarge=0.9



  

Multiple Importance sampling

Mean value substitution Multiple Importance sampling



  

Example 6

Combined Correlated and 

Importance Sampling

in Direct Illumintion Computation 
for Area Lights

and Environment Mapping 



  

Correlated sampling

integrand f
main part g

+
J = g dz

f dz =

g dz + f-g dz =

J + f-g dzI = f dz

f-g



  

Problem spots - example

direct lighting, area light source

could be calculated analytically

correlated 
sampling



  

Problem spots - example

direct lighting, area light source

could be calculated analytically

correlated 
sampling



  

Linear combination

f  g g f  0

f
p

f
p 

g
pJ-

f
p 

g
pJ-

 f-g
pJ g

f

correlated estimator importance estimator



  

Finding the 

minimizing the variance:

 ~ correlation of f/p and g/p

provides the formula:

computed from 
the samples

only asymptotically 
unbiased

() = E
2

f(z) 
p(z) 

g(z) 
p(z) +  J - p(z) p(z) - I

 =
E

E
g(z) 
p(z) J -

2

g(z) 
p(z) J -

f(z) 
p(z) I -



  

Light source sampling



occluder
emittance Le

visibility v
geom factor G

BRDF fr

light



  

Main part

- uniform emittance
- no occlusion

- diffuse surface

point-to-polygon form factor

g = Le fr G
~ ~ J =   g = Le fr    G

~ ~ 

Le

v

fr fr

Le

1

~

~







  

 calculation

using derived formula

 = 1 if fully visible
 = 0 if fully occluded

fractional
visibility



  

Results - images

importance
sampling



  

Results - images

correlated
sampling



  

Results - images

combined
sampling



  

Environment mapping & skylight illumination



occluder

radiance Lenv

visibility v

scattering 
density w





  

Main part

no occlusion

smooth map non-specular

f = Lenv  v  w

g = Lenv   w g = Lenv  ad
~

J =   g = Lenv ad

ad =   wLenv =   Lenv

~

~







  

correlated

Environment mapping results

combined

importance
(emittance)



  correlated

Environment mapping results

importance (BRDF)

combined



  

Thank you


