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Abstract. This paper is addressed to the numerical solving of the ren-
dering equation in realistic image creation. The rendering equation is
integral equation describing the light propagation in a scene accordingly
to a given illumination model. The used illumination model determines
the kernel of the equation under consideration. Nowadays, widely used
are the Monte Carlo methods for solving the rendering equation in order
to create photorealistic images.

In this work we consider the Monte Carlo solving of the render-
ing equation in the context of the parallel sampling scheme for hemi-
sphere. Our aim is to apply this sampling scheme to stratified Monte
Carlo integration method for parallel solving of the rendering equa-
tion. The domain for integration of the rendering equation is a hemi-
sphere. We divide the hemispherical domain into a number of equal
sub-domains of orthogonal spherical triangles. This domain partition-
ing allows to solve the rendering equation in parallel. It is known that
the Neumann series represent the solution of the integral equation as
a infinity sum of integrals. We approximate this sum with a desired
truncation error (systematic error) receiving the fixed number of iter-
ation. Then the rendering equation is solved iteratively using Monte
Carlo approach. At each iteration we solve multi-dimensional integrals
using uniform hemisphere partitioning scheme. An estimate of the rate
of convergence is obtained using the stratified Monte Carlo
method.

This domain partitioning allows easy parallel realization and leads to
convergence improvement of the Monte Carlo method. The high perfor-
mance and Grid computing of the corresponding Monte Carlo scheme
are discussed.
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1 Introduction

The main task in the area of computer graphics is photorealistic image creation.
From mathematical point of view, photorealistic image synthesis is equivalent
to the solution of the rendering equation [9]. The rendering equation is a Fred-
holm type integral equation of second kind. It describes the light propagation
in closed domains called scenes. The kernel of the rendering equation is deter-
mined by the used illumination model. The illumination model (see [11] for a
survey of illumination models) describes the interaction of the light with a point
on the surface in the scene. Each illumination model approximates the BRDF
(bidirectional reflectance distribution function), taking into account the mate-
rial surface characteristics. The physical properties like reflectivity, roughness,
and colour of the surface material are characterized by the BRDF. This function
describes the light reflection from a surface point as a ratio of outgoing to in-
coming light. It depends on the wavelength of the light, incoming, outgoing light
directions and location of the reflection point. The BRDF expression receives
various initial values for the objects with different material properties. Philip
Dutré in [4] presents a good survey of the different BRDF models for realistic
image synthesis.

One possible approach for the solution of rendering equation is the Monte
Carlo methods, which has been in the focus of mathematical research for several
decades. Frequently the Monte Carlo methods for numerical integration of the
rendering equation are the only practical method for multi-dimensional integrals.
The convergence rate of conventional Monte Carlo method is O(N− 1

2 ) which
gives relatively slow performance at realistic image synthesis of complex scenes
and physical phenomena simulation. In order to improve Monte Carlo method
and speed up the computation much of the efforts are directed to the variance
reduction techniques. The separation of the integration domain [12] is widely
used Monte Carlo variance reduction method. Monte Carlo algorithms using
importance separation of the integration domain are presented in [8], [7], [2],
[5] and [6]. The method of importance separation uses a special partition of
the domain and computes the given integral as a sum of the integrals on the
sub-domains. An adaptive sub-division technique of spherical triangle domains
is proposed by Urena in [14]. Keller [10] suggests the usage of low discrepancy
sequences for solving the rendering equation and proposes Quasi Monte Carlo
approach. The idea is to distribute the samples into the domain of integration,
as uniformly as possible in order to improve the convergence rate.

Further in this paper we consider the Monte Carlo solving of rendering equa-
tion with uniform hemisphere separation. The technique of uniform hemisphere
partition was introduced by us and described in [3]. The uniform separation of
the integration domain into uniformly small by probability as well as by size sub-
domains fulfills the conditions of the Theorem for super convergence presented
in [12]. We show that the variance is bounded for numerical solving of the multi-
dimensional integrals. Due to uniform separation of integration domain, this ap-
proach has hierarchical parallelism which is suitable for Grid implementations.
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2 Rendering Equation for Photorealistic Image Creation

The light propagation in a scene is described by rendering equation [9], which is
a second kind Fredholm integral equation. The radiance L, leaving from a point
x on the surface of the scene in direction ω ∈ Ωx (see Fig. 1), where Ωx is the
hemisphere in point x, is the sum of the self radiating light source radiance Le

and all reflected radiance:

L(x, ω) = Le(x, ω) +
∫

Ωx

L(h(x, ω′), −ω′)fr(−ω′, x, ω) cos θ′dω′.

The point y = h(x, ω′) indicates the first point that is hit when shooting a ray
from x into direction ω′. The radiance Le has non-zero value if the considered
point x is a point from solid light source. Therefore, the reflected radiance in
direction ω is an integral of the radiance incoming from all points, which can
be seen through the hemisphere Ωx in point x attenuated by the surface BRDF
fr(−ω′, x, ω) and the projection cos θ′, which puts the surface perpendicular to
the ray (x, ω′). The angle θ′ is the angle between surface normal in x and the
direction ω′. The law for energy conservation holds, because a real scene always
reflects less light than it receives from the light sources due to light absorption
of the objects, i.e.:

∫
Ωx

fr(−ω′, x, ω) cos θ′dω′ < 1. That means the incoming
photon is reflected with a probability less than 1, because the selected energy is
less than the total incoming energy. Another important property of the BDRF
is the Helmholtz principle: the value of the BRDF will not change if the incident
and reflected directions are interchanged, fr(−ω′, x, ω) = fr(−ω, x, ω′).

Many BRDF for realistic image synthesis are based on surface microfacet
theory. They are considered as function defined over all directions ω′ ∈ Ωx (see
[15]). For example, the BRDF function of Cook-Torrance (see [1], [4] and [11])
depends on the product of three components: Fresnel term - F , microfacets
distribution function - D and geometrical attenuation factor - G; all depending
on ω′. More detailed look at those functions gives us the assumption that Cook-
Torrance BRDF has continuous first derivative.

Fig. 1. The geometry for the rendering equation
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Fig. 2. Partitioning of the domain of integration

3 Parallel Monte Carlo Approach for the Rendering
Equation

In order to solve the rendering equation by classical Monte Carlo approach we
estimate the integral over the domain Ωx. This is done by independently sam-
pling N points according to some convenient probability density function p(ω′),
and then computing the Monte Carlo estimator ξN . Let us consider the sampling
of the hemisphere Ωx with p(ω′) = 1

Ωx
= 1

2π , where p =
∫

Ωx

p(ω′)dω′ = 1. It is

known that the estimator ξN has the following form:

ξN =
2π

N

N∑
i=1

Le(h(x, ωi
′), −ωi

′)fr(−ωi
′, x, ω) cos θi

′.

The parallel Monte Carlo approach for solving the rendering equation is based
on the strategy for separation of the integration domain Ωx into non-overlapping
sub-domains, as described in [3]. We apply the symmetry property for partition-
ing of the hemisphere Ωx . The coordinate planes partition the hemisphere into
4 equal areas. The partitioning of each one area into 6 equal sub-domains is
continued by the three bisector planes. In Fig. 2 is shown the partitioning of the
area with positive coordinate values of X, Y and Z into 6 equal sub-domains.

Let us now apply the partitioning of the hemisphere Ωx into 24 non-overlapping
equal size sub-domains of orthogonal spherical triangles Ωix , where Ω�ABC =
Ωix = 1

24Ωx = π
12 for ix = 1, 2, . . . , 24.

We can rewrite the rendering equation as:

L(x, ω) = Le(x, ω) +
24∑

ix=1

∫

Ωix

L(h(x, ω′), −ω′)fr(−ω′, x, ω) cos θ′dω′,
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where Ωx =
⋃24

ix=1 Ωix . Therefore, the solution of rendering equation can be find
as a sum of integrals over equal size non-overlapping sub-domains Ωix .

Consider the probability:

p =
∫

Ωx

p(ω′)dω′ =
24∑

ix=1

∫

Ωix

p(ω′)dω′ =
24∑

ix=1

pix = 1,

it is obvious that pix =
∫

Ωix

p(ω′)dω′ = 1
24 for ix = 1, 2, . . . , 24. Each sub-domain

is sampled by random points Nix ∈ Ωix with a density function p(ω′)/pix . For all
sub-domains N independent sampling points are generated in parallel using the
sampling scheme for hemisphere from [3], where N = 24Nix for ix = 1, 2, . . . , 24,
t.e. the random sampling point are equal number in each sub-domain. In this
case the sum of integrals for solving the separate rendering equation is estimated
(see [12]) by:

ξ∗N =
24∑

ix=1

π

12Nix

Nix∑
s=1

Le(h(x, ωix,s
′), −ωix,s

′)fr(−ωix,s
′, x, ω) cos θix,s

′.

Comparing the two approach it is known (see in [12]) that the variance of ξ∗N
is not bigger to the variance of ξN or always V ar[ξ∗N ] ≤ V ar[ξN ]. Somting more,
one can see that in our case of domain separation V ar[ξ∗N ] = 1

24V ar[ξN ]. Also,
the main advantages of this stratified sampling approach is the easy parallel
realization.

4 Monte Carlo Solving of Multi-dimensional Integrals

The global illumination (see in Fig. 3) in realistic image synthesis can be modeled
as stationary linear iterative process. According to the Neumann series, the
numerical solving of rendering equation is iterative [13] process, where multi-
dimensional integrals are considered.

For solving multi-dimensional integrals, let us suppose that kε is maximum
level of recursion (recursion depth or number of iterations, see [1]) sufficient for

Fig. 3. Global illumination as iterative process
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numerical solving of the integral with a desired truncation error ε. In this case on
each iteration we have to solve the multi-dimensional integrals of the following
type:

L(j) = Lj − Lj−1 =
∫

Ωx1

. . .

∫

Ωxj

K1(x1, ω
′
1) . . .Kj(xj , ω

′
j)L

e(xj+1, ω
′
j)dω′

1 . . . dω′
j ,

where Kj(xj , ω
′
j) = fr(−ω′

j, xj , ω
′
j−1)cosθ

′
j for j = 1, . . . , kε and L0 = Le(x1, ω)

(note that L0 = Le(x1, ω) = 0 if the point x1 is not a point from solid light
source). The total domain of integration Ωx can be represented as:

Ωx = Ωx1 × Ωx2 × . . . × Ωxkε
=

kε∏
j=1

⎛
⎝ 24⋃

ixj
=1

Ωixj

⎞
⎠ = 24kε

( π

12

)kε

.

Let us consider the integral L(j) in the case when j = kε or L(j) = L(kε).
Using the partitioning of each domain Ωxj (for j = 1, 2, . . . , kε) of non-overlap

equal size spherical triangle sub-domains Ωxj =
24⋃

ixj
=1

Ωixj
with size Ωixj

=
(

π
12

)

for ixj = 1, 2, . . . , 24; we can rewrite the multi-dimensional integral L(kε) as:

L(kε) =
24∑

ix1=1

. . .

24∑
ixkε

=1

∫

Ωix1

. . .

∫

Ωixkε

Le(xkε+1, ω
′
kε

)F (ω′
1, . . . , ω

′
kε

)dω′
1 . . . dω′

kε
,

where F (ω′
1, . . . , ω

′
kε

) =
∏kε

j=1 Kj(xj , ω
′
j). For numerical solving of integral L(kε),

we use N realization of random samples and N = 24kε . It means that only one
random sample is generated in each sub-domain Ωs for s = 1, 2, . . . , N , received
after partitioning of Ωx. Then approximate the integral L(kε) with ξ

∗(kε)
N :

ξ
∗(kε)
N =

( π

12

)kε
N∑

s=1

Le
s(xkε+1, ω

′
kε

)Fs(ω′
1, . . . , ω

′
kε

)

with the integral approximation error εN =
∣∣∣ξ∗(kε)

N − L(kε)
∣∣∣ =

√
V ar

[
ξ

∗(kε)
N

]
N .

According to the statements proofed in [12], the variance V ar
[
ξ
∗(kε)
N

]
can be

estimated as:

V ar
[
ξ
∗(kε)
N

]
≤ c2L2N−1− 2

kε ,

where the first partial derivatives of F (ω′
1, . . . , ω

′
kε

) are limited by an existing

constant L,
∣∣∣ ∂F
∂ω′

j

∣∣∣ ≤ L for j = 1, 2, . . . , kε and the constant c = kεc1c2. Also,
there exist constants c1 and c2 such that:

ps ≤ c1

N
and ds ≤ c2

N
1

kε

,

where ps is the probability and ds is diameter of the domain Ωs for each s =
1, 2, . . . , N . Since all Ωs for each s = 1, 2, . . . , N are of equal size, it is obvious
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that p = 24kεps = 1 or ps = 1
24kε

. The diameter ds for each s = 1, 2, . . . , N

can be calculated as ds =
√

kε

∣∣∣max
(
ÂC, ÂB, B̂C

)∣∣∣ =
√

kε

∣∣∣ÂB
∣∣∣, where

∣∣∣ÂB
∣∣∣

is the length of arc ÂB in the spherical triangle �ABC shown in Fig. 2. We
recall the derived in [3] transformations, where tan ÂB = 1

cos ϕ at ϕ = π
4 and

therefore the length of arc ÂB is arctan
(√

2
)
. Therefore, ds =

√
kε arctan

(√
2
)

for s = 1, 2, . . . , N .
Now we estimates the constants c1 and c2 by the inequalities:

N

24kε
≤ c1 =⇒ 1 ≤ c1 and dsN

1
kε ≤ c2 =⇒

√
kεarctan

(√
2
)
N

1
kε ≤ c2.

Therefore we can write:

V ar
[
ξ
∗(kε)
N

]
≤ c2L2N−1− 2

kε = k2
εc2

1c
2
2L

2N−1− 2
kε

which is equivalent to:

V ar
[
ξ
∗(kε)
N

]
≤ k3

ε arctan2
(√

2
)

L2N−1 ⇒V ar
[
ξ
∗(kε)
N

]
≤ arctan2

(√
2
)

L2 k3
ε

24kε
.

The variance is bounded if we solve multi-dimensional integrals with uniform
hemisphere separation approach. The last inequality shows us that the conver-
gence rate for iterative solution of rendering equation with a desired truncation
error ε depends on the sufficient recursion depth kε. Also, the multi-dimensional
integrals are numerically solved with a rate of convergence O(N−1). This is
through the uniform separation of the integration domain into uniformly small
by probability as well by size sub-domains, all of them matching the conditions of
the Theorem for super convergence (see the proof in [12]). Summing the variance
for all kε iterations we obtain: V ar [ξ∗N ] =

∑kε

j=1 V ar
[
ξ
∗(j)
N

]
=

(
N−1
23N

)
V ar [ξN ],

where the variance V ar [ξN ] indicates the variance for solving the rendering equa-
tion by N independent random sampling points without uniform separation of
integration domain. Therefore, the total variance for solving of the rendering
equation with uniform hemisphere separation is reduced.

5 Conclusion

The parallel Monte Carlo approach for solving of the rendering equation pre-
sented in this paper is based on partitioning of the hemispherical domain of
integration by a way introduced by us in [3]. Essentially, this approach accumu-
lates the stratified sampling by uniform separation of the integration domain. In
fact, the uniform separation scheme is variance reduction approach and speed
up the computations. The uniform separation of the integration domain hints
for the applying of low discrepancy sequences as shown in [10]. The combination
of uniform separation with the usage of low discrepancy sequences for numeri-
cal solving of the rendering equation could improve the uniformity of sampling
points distribution and more so to reduce the variance. On the other hand this
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Monte Carlo approach includes hierarchical parallelism. Therefore, it is suitable
for implementation in algorithms with parallel realization of computations and
completely can utilize the power of Grid computations. Thus, the main advan-
tages of this approach lie in the efficiency of parallel computations. The future
research of the parallel Monte Carlo approach under consideration for rendering
equation could be developed in the following directions: 1) Investigation of the
utilization of low discrepancy sequences with the uniform separation of integra-
tion domain. 2) Development of computational parallel Monte Carlo algorithms
for creation of photorealistic images. 3) Creation of parallel Monte Carlo and
Quasi Monte Carlo algorithms for high performance and Grid computing.
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