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Definition

• Monte Carlo method is a numerical method using random variables for
solving numerical problems.

Definition 1. [Yu.A.Shreider, 66] The Monte Carlo method consists of solving various

problems of computational mathematics by means of the construction of some random process

for each such problem, with the parameters of the process equal to the required quantities of

the problem.

There are two classes of Monte Carlo algorithms:

• Monte Carlo Simulations: the problem is described by a random process
and the mathematical model is probabilistic.

• Monte Carlo Numerical Algorithms: the problem is deterministic (an
artificial random process is introduced).
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Historical Overview

• 1777: G. Compte de Buffon: computing the probability P = 2L/πd;

• 1886: Marquis Pierre-Simon de Laplace: method of computing π;

• 1949: ”official birthday” of Monte Carlo - Manhatton project (John von
Neumann, E. Fermi, G. Kahn, N. Metropolis and S. Ulam), Los Alamos
(USA);

• The end of 20th century: the development of modern computers,
and particularly parallel computing systems, provided fast and specialized
generators of random numbers.
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Areas of application of Monte Carlo algorithms

The randomized algorithms are currently widely used for those problems for

which the deterministic algorithms hopelessly break down:

• high-dimensional integration,

• LA problems for large-scale systems,

• boundary-value problems for differential equations in domains

with complicated boundaries,

• simulation of turbulent flows,

• studying of chaotic structures.
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Advantages of Monte Carlo

• Direct determination of an unknown functional of the solution,

• efficient parallel implementation,

• efficient vectorization.

In statistical physics and environmental sciences: computing linear functionals
of the solution of the equations for

• density distribution function (such as Schroedinger equation), i.e., probability
of finding a particle at a given (x, t) (integral of the solution),

• mean value of the velocity of the particles (the first integral moment of the
velocity) or

• energy (the second integral moment of the velocity) and, so on.
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Error estimation

Definition 2. If J is the exact solution of the problem, then the probability
error is the least possible real number RN , for which:

P = Pr
{|ξN − J | ≤ RN

}
, (1)

where 0 < P < 1. If P = 1/2, then the probability error is call probable error.
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A weak point of Monte Carlo

Dealing with randomized algorithms one has to accept that the result of the
computation can be true only with a certain (even high) probability.

• The probabilistic setting of the problem of error estimation may not be
acceptable if one needs a guaranteed accuracy or strictly reliable results.
But in the most cases it is reasonable to accept an error estimate with a
probability smaller than 1.

In fact, this is the price paid by randomized algorithms to increase their
convergence rate. It is important to note here that the value of the probability
P (0 < P < 1) in (1) does not reflect on the rate of convergence of the
probability error Rn. It reflects only on the constant. That’s why the choice of
the value of P is not important for the convergence rate (respectively, for the
rate of algorithmic complexity).
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Motivation

Criteria for choice of a better algorithm:

• the algorithm, which produces the ε-approximation of the solution faster or
with a smaller number of steps

To increase the efficiency of the algorithms one should:

• decrease the probability error, or

• find a better parallelization strategy if clusters or grids are used.
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Iterative Monte Carlo

Define an iteration of order i:

u(k+1) = Fk(A, b, u(k), u(k−1), . . . , u(k−i+1)),
where u(k) is obtained from the k-th iteration. It is desired that

u(k) → u = A−1b as k →∞.

The algorithm is called stationary if Fk = F for all k, that is, Fk is independent
of k. The iterative process is called linear if Fk is a linear function of
u(k), . . . , u(k−i+1). Here we will be interested in stationary linear iterative
Monte Carlo algorithms.

Consider the sequence u1, u2, ...,:

uk = L(uk−1) + f, k = 1, 2, . . . .
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uk = f + L(f) + · · ·+ Lk−1(f) + Lk(u0), k > 0,

When the infinite series converges, the sum is an element u which satisfies the
equation

u = L(u) + f.

The truncation error is uk − u = Lk(u0− u). Let J(uk) be a functional that is
to be calculated. Consider the spaces Ti+1 = IRd × IRd × · · · × IRd︸ ︷︷ ︸

i times

, i =

1, 2, . . . , k, .

θi, i = 0, 1, . . . , k are defined on the respective product spaces Ti+1 and have
conditional mathematical expectations:

Eθ0 = J(u0), E(θ1/θ0) = J(u1), . . . , E(θk/θ0) = J(uk),

where J(u) is a functional of u.
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Performance analysis

Definition 3. Computational cost of a randomized iterative

algorithm AR is defined by

cost(AR, x, ω) = nE(k)t0,

where E(k) is the mathematical expectation of the number of

transitions in the sequence and t0 is the mean time needed to

compute the value of one transition.
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Linear Algebra Problems - the Power method

A ∈ Cn×n; X−1AX = diag(λ1, . . . , λn), X = (x1, . . . , xn)T , and
|λ1| > |λ2| ≥ . . . ≥ |λn|. Given f (0) ∈ Cn, the power method produces a
sequence of vectors f (k):

z(k) = Af (k−1),

f (k) = z(k)/||z(k)||2,

λ(k) = [f (k)]HAf (k), k = 1, 2, . . . .

The computational complexity:

T1(PM) ≈ τ lAk(4n2 + 3n− 2) = O(kn2),

T1(PM −MC) ≈ (c1 + c2d)kN = O(kdN).
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Monte Carlo evaluating matrix polynomials

p(A) =
s∑

i=0

biA
i

MC evaluates the real values:

(h, p(A)f).

Consider MC method for evaluating the real values:

λ =
(h,Ap(A)f)
(h, p(A)f)

.
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Monte Carlo algorithms

The Power Monte Carlo algorithm: p(A) = Ai

Iteration process:

λmax = limi→∞
(h,Aif)

(h,Ai−1f)
,

(h,Aif) = E{Wifki
}, i = 1, 2, . . . . (2)

λmax ≈ E{Wifki
}

E{Wi−1fki−1
}.
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Inverse shifted MC algorithm (Resolvent MC)

p(A) =
∞∑

i=0

qiCi
m+i−1A

i

If |qA| < 1, then

p(A) =
∞∑

i=0

qiCi
m+i−1A

i = [I − qA]−m = Rm
q

R is the resolvent matrix.

λ =
(h,Ap(A)f)
(h, p(A)f)

=
(h,ARm

q f)
(h,Rm

q f)
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Formulation of the MC Algorithm

Suppose we have a Markov chain

T = α0 → α1 → α2 → . . . → αk → . . .

with n states. The random trajectory (chain) Tk of length k is defined as
follows:

Tk = α0 → α1 → . . . → αj → . . . → αk. (3)

Assume that

P (α0 = α) = pα, P (αj = β|αj−1 = α) = pαβ. (4)

Probabilities pαβ define a transition matrix P . We require that

n∑
α=1

pα = 1 and
n∑

β=1

pαβ = 1, for any α = 1, 2, ..., n. (5)
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MAO density distributions

Definition 4. The distribution (pα1, ..., pαn) is tolerant to vector v, if

{
pαs > 0 when vαs 6= 0
pαs ≥ 0 when vαs = 0.

(6)

Similarly, the distribution pαs−1,αs is tolerant to matrix A, if

{
pαs−1,αs > 0 when aαs−1,αs 6= 0
pαs−1,αs ≥ 0 when aαs−1,αs = 0.

(7)

We will consider a special choice of tolerant density distributions pi and pi,j

defined as follows:

pi =
|vi|
‖ v ‖, pij =

|aij|
‖ ai ‖. (8)
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MC algorithm for computing bilinear forms of
matrix powers (v, Akh)

The pair of density distributions (8) defines a finite chain of vector and matrix
entrances:

vα0 → aα0α1 → . . . → aαk−1αk
. (9)

The latter chain induces the following product of matrix/vector entrances and
norms:

Ak
v = vα0

k∏
s=1

aαs−1αs

‖ Ak
v ‖=‖ v ‖ ×

k∏
s=1

‖ aαs−1 ‖ .

The rule for creating the value of ‖ Ak
v ‖ is following: the norm of the initial vector v, as well

as norms of all row-vectors of matrix A visited by the chain (9) defined by densities (8), are

included. For such a choice of densities pi and pij we can prove the following Lemma.
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Lemma 1.

E{hαk
} =

sign{Ak
v}

‖ Ak
v ‖

(
v, Akh

)
.

Obviously, the standard deviation σ{hαk
} is finite. Since we proved that the

random variable θ(k) = sign{Ak
v} ‖ Ak

v ‖ hαk
is a unbiased estimate of the

form (v,Akh), Lemma 1 can be used to construct a MC algorithm.

Let us consider N realizations of the Markov chain Tk (3) defined by the pair

of density distributions (8). Denote by θ
(k)
i the ith realization of the random

variable θ(k). Then the value

θ̄(k) =
N∑

i=1

θ
(k)
i = sign{Ak

v} ‖ Ak
v ‖

N∑

i=1

{hαk
}i (10)

can be considered as a MC approximation of the form (v,Akh).
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In fact, (10) together with the rules (8) defines a MC algorithm. The
expression (10) gives a MC approximation of the form (v, Akh) with a

probability error R
(k)
N . Obviously, the quality of the MC algorithm depends on

the behavior of the standard deviation σ{θ(k)}. So, there is a reason to
consider a special class of robust MC algorithms.
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Robust MC algorithms

Definition 5. MC algorithm for which the standard deviation does not
increase with increasing of matrix power k is called robust MC algorithm.

Lemma 2. If MC algorithm is robust, then there exist a constant M such
that

lim
k→∞

σ{θ(k)} ≤ M.

It is interesting to answer the question:

• How small could be the probability error? and

• Is it possible to construct MC algorithms with zero probability error?

To answer the first question one has to analyze the structure of the variance.
Then it will be possible to answer the second question concerning the
existence of algorithms with zero probability error.
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Interpolation MC algorithms

Definition 6. MC algorithm for which the probability error is zero is called
interpolation MC algorithm.

The next theorem gives the structure of the variance for MAO algorithm. Let
us introduce the following notations:

ĥ = {h2
i}n

i=1,

v̄ = {|vi|}n
i=1,

Ā = {|aij|}n
i,j=1.

Theorem 1.

D{θ(k)} =‖ Ak
v ‖

(
v̄, Ākĥ

)
− (v,Akh)2.
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We can formulate an important corollary that gives a sufficient condition for
constructing an interpolation MC algorithm.

Corollary 1. Let h = (1, . . . , 1), v = (1
n, . . . , 1

n) and A =




1
n . . . 1

n...
1
n . . . 1

n


.

Then MC algorithm defined by density distributions (8) is an interpolation MC
algorithm.
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Error balancing technique

There are two types of errors

• systematic error rk, k ≥ 1 (obtained from the truncating of the Markov
chain) which depends on the number of iterations k of the used iterative
process:

rk ≤ ‖ A ‖k+1
2 ‖f‖2

1− ‖ A ‖2
,

and

• statistical error RN , which depends on the number of samples N of
Markov chain:

RN = cβ σ2(θ[h])N−1/2, 0 < β < 1, β ∈ IR.
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Computational Cost and Speed-up

cost1(A(RMC), x, ω) ≈ 2τ

[
(k + γA)lA +

1
2
dlL

]
kN + 2τn(1 + d)

≈ (c1 + c2d)kN. (11)

To get an optimal (by rate) algorithm we should have k = O(1).

Sp(RMC) ≈ (c1 + c2d)kN

(c1 + c2d)kN
p (1 + ε)

.

Sp(RMC) ≈ p

1 + ε
≥ 1.

1
1 + ε

≤ Ep(RMC) ≤ 1.
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Applicability and acceleration analysis

The systematic error is

O

[(
2λ1 + λn

2λ1 + λn−1

)k
]

, (12)

where k is the power (or the number of iterations).

• The best convergence in case when all eigenvalues are positive or all are
negative is O[(2/3)k].

• When λn ≈ −2λ1 the convergence is very good and the complexity is close
to the optimal complexity.
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Conclusion

• A common approach for solving a class of LA problems is

formulated.

• A necessary condition for constructing a robust Monte Carlo
algorithm is obtained.

• It is shown that interpolation Monte Carlo algorithms (i.e.,

algorithms with zero probability error) exist.

• Balancing of errors is an important issue for constructing

efficient algorithms.
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Questions?

http://www.personal.rdg.ac.uk/˜sis04itd/
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