Proceedings of the International Multiconference on ISBN 978-83-60810-14-9
Computer Science and Information Technology pp. 887-891 ISSN 1896-7094

Ant Colony System Approach for Protein Folding

Stefka Fidanova, Ivan Lirkov
Institute for Parallel Processing, Bulgarian Academy ofB8ces, Acad G. Bonchey, bl. 25A, 1113 Sofia, Bulgaria
E-mail: stefka@parallel.bas.bg, ivan@parallel.bas.bg
http://parallel.bas.bgktefkal, http://parallel.bas.bglan/

Abstract—The protein folding problem is a fundamental prob- which is close to the real one and than it to be specify
lem in computational molecular biology and biochemical phgics. ysing system of differential equations. So, as closer is the
The high resolution 3D structure of a protein is the key 10 cqnformation, as less complex is the system of differential

the understanding and manipulating of its biochemical and Hi Th th tati | ti d Th
cellular functions. All information necessary to fold a protein equations. us the computational ime aecreases. ese

to its native structure is contained in its amino-acid sequece. Models try to generally reflect different global charactrs
Even under simplified models, the problem is NP-hard and the of protein structures. In the hydrophobic-polar (HP) model
standard computational approach are not powerful enough to [4] the primary amino acid sequence of a protein (which
search for the correct structure in the huge conformation spce. can be represented as a string over twenty-letter alphibet)
Due to the complexity of the protein folding problem simplified .

models such as hydrophobic-polar (HP) model have become abs_traCted to _a sequence of hydrOp_hOb'C (H) and polar (P)
one of the major tools for studying protein structure. Various residues that is represented as a string over the letter H and
optimization methods have been applied on folding problem P. It describes the proteins based on the fact that hydraphob
including Monte Carlo methods, evolutionary algorithm, ant  amino acids tend to be less exposed to the aqueous solvent
colony optimization algorithm. In this work we develop an art than the polar ones, thus resulting in the formation of a

algorithm for 3D HP protein folding problem. It is based on very . . -
simple design choices in particular with respect to the solion hydrophobic core in the spatial structure. In the model, the

components reinforced in the pheromone matrix. The achiexe a@mino acid sequence is abstracted to a binary sequence of
results are compared favorably with specialized state-ofre-art monomers that are either hydrophobic or polar. The stractur

methods for this problem. Our empirical results indicate that our  js g chain whose monomers are on the vertices’s of a three
rather simple ant algorithm outperforms the existing resuls for dimensional cubic lattice. The free energy of a conforma-
standard benchmark instances from the literature. Furthemore, . . . . .
we compare our folding results with proteins with known folding. tion is def_lned as the .negatlve number  of .non—c.:onsecuuve
hydrophobic-hydrophobic contacts. A contact is definecvas t
Index Terms—Ant Colony Optimization, metaheuristics, hy- non-consecutive monomers in the chain occupying adjacent

drophobic-polar model, protein folding sites in the lattice. In spite of its apparent simplicity,diimg
optimal structures of the HP model on a cubic lattice is NP-
. INTRODUCTION complete problem [2].

HE number of amino acids and their sequence give Ant Colony Optimization (ACO) is a population-based

a protein its individual characteristics. The number aftochastic search method for solving a wide range of combi-
amino acids in each protein ranges approximately betweeatorial optimization problems. ACO is based on the concept
20 and 40000, although most proteins are around hundmfdindirect communication between members of a population
amino acids in length. Each protein’s sequence of amitlorough interaction with the environment. Ants indirectly
acids determines how it folds into a unique three dimengiom@mmunicate with each other by depositing pheromone trails
structure that is its minimum energy state. Knowledge of 3Bn the ground and thereby influencing the decision processes
structure of proteins is crucial to pharmacology and medicaf other ants. From the computational point of view, ACO is an
sciences for the following important reasons. Most drugekwoiterative construction search method in which a populatibn
by attaching themselves to a protein so that they can eittgdmple agents (ants) repeatedly constructs candidatd@wu
stabilize the normally folded structure or disrupt the fotfl to a given problem. This construction process is probabilis
pathway, which leads to a harmful protein. Thus, knowingcally guided by heuristic information on the given prahle
exact 3D shapes will help to design drugs. instances as well as by a shared memory containing experienc

Determining the functionality of a protein molecule fromgathered by the ants in previous iterations.

amino acid sequence remains a central problem in computaThis work is an investigation of the HP model in a three
tional biology, molecular biology, biochemistry, and pltgs dimensional cubic lattice using an ACO as a tool to find the op-
A system of differential equations is used to describe thienal conformation for a given sequence. The achieved t&sul
forces, which affect the folding. It is very complicate andre evaluated and compared with other metaheuristic method
difficult to be solved. Even the experimental determinatibn using 10 sequences of 48 monomers from the literature and
these conformations is often difficult and time consuminhgs | with real proteins with known folding.
common practice to use models that simplify the search spac@he paper is organized as follows: the problem is de-
of possible conformation. The aim is to find a conformatiorscribed in section 2. The ACO algorithm is explained
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in section 3. The achieved results are discussed in sé&wolutionary Algorithm (EA) [9], Monte Carlo (MC) algo-
tion 4. The paper ends with a summary of the concluithm [10] and Ant Colony Optimization (ACO) algorithm [7].
sions. An early application of EA to protein structure predictioasv
presented by Unger and Moult [11]. Their EA incorporates
characteristics of Monte Carlo methods. Currently amomg th
Efforts to solve the protein folding problem have traditionbest known algorithms for the HP protein folding problem
ally been rooted in two schools of thought. One is based on tisePruned-Enriched Rosenblum Method (PERM) [8]. Among
principles of physics: that is, the thermodynamic hypothesthese methods are the Hydrophobic Zipper (HZ) method
according to which the native structure of the protein corrgs] and the Constraint-based Hydrophobic Core Construc-
sponds to the global minimum of its free energy. The othéibn Method (CHCCM) [12]. The Core-direct chain Growth
school of thought is based on the principles of evolutiorud’h method (CG) [3] biases construction towards finding a good
methods have been developed to map the sequence of bperophobic core by using a specifically designed heuristic
protein (target) to the structure of another protein (teatg)l function.
to model the overall fold of the target based on that of the
template and to infer how the target structure will be chainge lIl. ACO ALGORITHM FORPROTEIN FOLDING PROBLEM
related to the template, as a result of substitutions [1]. Real ants foraging for food lay down quantities of phero-
Accordingly methods for protein-structure prediction hagone (chemical cues) marking the path that they follow. An
been divided into two classes: de novo modeling and corgolated ant moves essentially at random but an ant encoun-
parative modeling. The de novo approaches can be furtfiefing a previously laid pheromone will detect it and decide
subdivided, those based exclusively on the physics of th& follow it with high probability and therefore reinforce i
interactions within the polypeptide chain and between tith a future quantity of pheromone. The repetition of the
polypeptide and solvent, using heuristic methods [9], [103bove mechanism represents the auto-catalytic behavieabf
and knowledge-based methods that utilize statisticalnise ant colony where the more the ants follow a trail, the more
based on the analysis of recurrent patterns in known protéiiractive that trail becomes.
structures and sequences. The comparative modeling modeishe ACO algorithm uses a colony of artificial ants that
structure by copying the coordinates of the templates in thehave as co-operative agents in a mathematical space where
aligned core regions. The variable regions are modeled #iey are allowed to search and reinforce path ways (solsition
taking fragments with similar sequences from a database [iI] order to find the optimal ones. The problem is represented
The processes involving in folding of proteins are verPy graph and the ants walk on the graph to construct solutions
complex and only partially understood, thus the simplifieéifter initialization of the pheromone trails, ants constru
models like Dill's HP model have become one of the majdeasible solutions and the pheromone trails are updated. At
tools for studying proteins [4]. The HP model is based ogach step ants compute a set of feasible moves and select
the observation that hydrophobic interconnection is tixmly  the best one (according to some probabilistic rules) toycarr
force for protein folding and the hydrophobicity of aminads: out the rest of the tour. The transition probability is based
is the main force for development of native conformation ¢in the heuristic information and pheromone trail level of
small globular proteins. In the HP model, the primary amin&e move. The higher the value of the pheromone and the
acid sequence of a protein is abstracted to a sequence oflﬁ@uristic information, the more profitable is to select this
drophobic (H) and polar (P) residues, amino acid componenf@ove and resume the search. In the beginning, the initial
The protein conformations of this sequence are restriated Rheromone level is set to a small positive constant vajuend
self-avoiding paths on 3 dimensional sequence lattice. @nethen ants update this value after completing the constmcti
the most common approaches to protein structure predicti®f@ge. ACO algorithms adopt different criteria to update th
is based on the thermodynamic hypothesis which states tRBgromone level. In our implementation Ant Colony System
the native state of the protein is the one with lowest Gib4ACS) approach is used [6]. In ACS the pheromone updating
free energy. In the HP model, the energy of a conformgonsists of two stages: local update and global update.enhil
tion is defined as a number of topological contacts betwe@nts build their solutions, at the same time they locallyaipd
hydrophobic amino acid that are not neighbors in the givéhe pheromone level of the visited paths by applying thelloca
sequence. More specifically a conformatiomwith exactlyn ~ update rule as follows:
such H-H contacts has free eneyc) = n.(—1). The 3D HP
protein folding problem can be formally defined as follows.
Given an amino acid sequenge= s;s; ... sy, find an energy Where 7;; is an amount of the pheromone on the &igj)
minimizing conformation ofs, i.e. find ¢® € C(s) such that of the 3D cube latticep is a persistence of the trail and the
E® = E(c®) = min.cc(s) E(c), whereC(s) is the set of all term(1—p) can be interpreted as trail evaporation. The aim of
valid conformations for s. It was proved that this problem ithe local update rule is to make better use of the pheromone
NP-hard [2]. information by dynamically changing the desirability ofyed.
A number of well-known heuristic optimization methoddJsing this rule, ants will search in a wide neighborhood of
have been applied to the 3D protein folding problem inclgdirthe best previous solution. As is shown in the formula, the

Il. THE PROTEIN FOLDING PROBLEM

Tij < (1 = p)7ij + pTo 1)
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TABLE |
STANDARD BENCHMARK INSTANCES
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pheromone level on the paths is highly related to the value Hft Colony Optimization
evaporation parametgr The pheromone level will be reducedInitialize number of ants:

and this will reduce the chance that the other ants will $8|el?1itialize the ACO param,eterS'
the same solution and consequently the search will be mor ile not end-conditiondo '
diversified. When all ants have completed their solutiohs, t for k=0 to number of ants

phleromlone I(;\]/el Istﬁpdtﬁtidbb?/ appilyl?r? tge %Iob;allt_upda_tmg ant k starts from random node;
rule only on the paths that belong 1o the best solution since while solution is not constructedo

the beginning of the trials as follows: ant k selects a node with probability:

7ij — (1= p)7ij + A7ij, () end while
end for
here A — | —Eav 1f (i,5) € best solution Local search procedure;
WRerear; =4 otherwise Update-pheromone-trails;
. ) ) end while
The E,, is the free energy of the best folding. This global
updating rule is intended to provide a greater amount of Fig. 1. Pseudocode for ACO

pheromone on the paths of the best solution, thus intensify
the search around this solution.
There are six possible positions on the 3D lattice for every IV. EXPERIMENTAL RESULTS

amino acid. They are the neighbor positions of the precezlenc hmark i £l h 48 f
amino acid. Since conformations are rotationally invatitime Ten standard benchmark instances of length 48 for 3D HP

position of the first two amino acids can be fixed without logarotein folding shown in Table | hgve been widely used in
of generality. During the construction phase, ants foldaagin the Ilteratur(_a [3], [7], [9]-[11]. Experiments on theserﬂiard
from the left end of the sequence adding one amino acid gnchmark instances were conducted by performing a number
a time based on the two sources of information: pheromofibindependent runs for each problem instance, 20 runs. The
matrix value, which represents previous search experjemge following parameter settings are used for all experiment as

heuristic information. The transition probability to seghe ¢ = 7 = I'L p = 0.5. Furthermore, aIL" .phercf)mone values
position of the next amino acid is given as: were initialized tory = 0.5 and a population of 5 ants were

used. The algorithm was terminated after 200 iterations. Al
Tﬁﬂfj experiments were performed on IBM ThinkPad Centrino 1.8
o B (3) GHz CPU, 512 MB RAM running SuSe Linux.

2keunused Tik ik In Table Il the achieved results by various heuristic algo-
Wherer;; is the intensity of the pheromone deposited by eaclthms are compared. For every of the benchmark instances
ant on the patli, j), « is the intensity control parametey,; the best found result by various methods is reported.
is the heuristic information equal to the number of new H-H We compared the solution quality obtained by: hydrophobic
contacts if the position is choseng is the heuristic parameter.zipper (HZ) algorithm [5], the constrain-based hydropleobi
Thus the higher the value of; andn;;, the more profitable core construction (CHCC) method [13], the core-directed
is to put the next amino acid on the positipnWhen the next chain growth (CG) algorithm [3], the contact interactions
amino acid is polar, the probability B;; = 0. In this case the (CI) algorithm [11], the pruned-enriched Rosenbluth mdtho
position is chosen randomly between allowed positions. WhéPERM) [7], the ACO algorithm of Hoos (ACO) [10] and
the set of allowed positions is empty, the ant does some stéips ACS approach presented in this paper. For ACS the best
back and after that it continues construction of the sotutiofound result and the average result over 20 runs are reported
On a Fig. 1 is the ACO algorithm. In the majority of the cases our average results are better

Py =
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TABLE Il
COMPARISON OF3D PROTEIN FOLDING
Benchmark| HZ | CHCC | CG | CI | PERM | ACO ACS
best result  average result

1 31 32 32 | 32 32 32 48 35.15
2 32 34 34 | 33 34 34 49 36
3 31 34 34 | 32 34 34 43 32.6
4 30 33 33 | 32 33 33 43 30.6
5 30 32 32 | 32 32 32 43 35.15
6 29 32 32 | 30 32 32 43 32.75
7 29 32 32 | 30 32 32 42 33.8
8 29 31 31 | 30 31 31 42 32.95
9 31 34 33 | 32 34 34 46 34.44
10 33 33 33 | 32 33 33 46 36.45

than the best found results by other methods. And for ¢
of the cases our best result is better than the best res
of other methods. In ACO a local search procedure is us
to improve the results. ACS approach is used without loc
search procedure. The main differences between ACO ¢
ACS implementations are the location of the polar amir
acids, the construction of the heuristic information and tf
pheromone updating. In ACO the authors put the polar ami
acids on same direction as precedence amino acid. In «
ACS we put the polar amino acids in random way, thus w
give to the ants more possibilities in a search process. T
main disadvantage of heuristic methods, as it is mention
by other authors, is that they achieve good folding for shc
proteins only. For illustration, we compare two real progei

with known folding and the folding achieved by our ACS
algorithm, which outperforms others on benchmark testee Li Fig. 2. Hepsidin
test problems we choose Hepsidin and c-src Tyrosine King
Sh3 Domain (SrcSH3).

The Hepsidin consists of 21 amino acids: GCRFCCNCCI
NMSGCGVCCRP. His folding comprises two crossed shee
and unstructured part between them (see Fig. 2).

The HP representation of the Hepsidin is: HPPHPPPPP
PHPHPHHPPPH. By our ACS algorithm we achieve the 3
folding represented on Fig. 3. The nodes represent aminis ac *
and the lines represent their succession. We observe twe,te!
orthogonally situated parts. One of them consists of 3 ami
acids and other consists of 4 amino acids. Between them
observe unstructured part. Thus we can conclude that th
is high similarity between the real Hepsidin folding andsthi
obtained by our algorithm.

The SrcSH3 protein consists of 62 amino acids. It foldin
comprise two long parallel situated sheets like a hairpsicia Fig. 3. ACS Hepsidin
the protein and short sheets at the beginning and at the end
of the protein, which are parallel each other and orthogonal
to the hairpin, see Fig. 4. amino acids. We apply our ACS algorithm on every short

By our ACS algorithm we achieve a folding represented qrart and at the end we assemble the folded parts to fold
Fig. 5. The achieved H-H contacts are 19. We observe thattire protein, see Fig. 6. The achieved H-H contacts are 20.
there is not similarity between real folding and this ackiv We observe two tense long parallel parts like hairpin. One
by our algorithm. Thus we prove the conclusion of othesf them consists of 8 and other 7 amino acids. At one of the
works [10], that heuristic methods are good for folding shoends we observe short tense part orthogonal to the hairpin.
proteins only. Therefore we decide to cut the HP chain @ther protein parts are unstructured. Thus we can conclude
the SrcSH3 protein to short parts consisting of about 10-11at there is high similarity with real folding of this prate
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V. CONCLUSION

Ant Colony System approach can be successfully applied to
the 3D protein folding problem. Our algorithm outperformes t
weel known from the literature methods. We have shown that
the components of the algorithm contribute to its perforogan
In particular, the performance is affected by the heuristic
function and selectivity of pheromone updating. The foddin
achieved by our algorithm is very similar to the real protein
folding when it is applied on short proteins. When the protei
is long, first we cut it on short parts, then we apply the
algorithm on every one of the parts separately, finally we
assemble the protein parts. Thus the achieved folding fudes hi
similarity to the real one. The obtained results are enagpoca
and the ability of the developed algorithm to generate dgpid
high-quality solutions can be seen. In the future we will
develope and improve the folding algorithm. The aim is to
achieve more realistic folding.

Fig. 4. Tyrosine SrcSH3 folding
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