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Abstract—The protein folding problem is a fundamental prob-
lem in computational molecular biology and biochemical physics.
The high resolution 3D structure of a protein is the key to
the understanding and manipulating of its biochemical and
cellular functions. All information necessary to fold a protein
to its native structure is contained in its amino-acid sequence.
Even under simplified models, the problem is NP-hard and the
standard computational approach are not powerful enough to
search for the correct structure in the huge conformation space.
Due to the complexity of the protein folding problem simplified
models such as hydrophobic-polar (HP) model have become
one of the major tools for studying protein structure. Various
optimization methods have been applied on folding problem
including Monte Carlo methods, evolutionary algorithm, ant
colony optimization algorithm. In this work we develop an ant
algorithm for 3D HP protein folding problem. It is based on very
simple design choices in particular with respect to the solution
components reinforced in the pheromone matrix. The achieved
results are compared favorably with specialized state-of-the-art
methods for this problem. Our empirical results indicate that our
rather simple ant algorithm outperforms the existing results for
standard benchmark instances from the literature. Furthermore,
we compare our folding results with proteins with known folding.

Index Terms—Ant Colony Optimization, metaheuristics, hy-
drophobic-polar model, protein folding

I. I NTRODUCTION

T HE number of amino acids and their sequence give
a protein its individual characteristics. The number of

amino acids in each protein ranges approximately between
20 and 40000, although most proteins are around hundred
amino acids in length. Each protein’s sequence of amino
acids determines how it folds into a unique three dimensional
structure that is its minimum energy state. Knowledge of 3D
structure of proteins is crucial to pharmacology and medical
sciences for the following important reasons. Most drugs work
by attaching themselves to a protein so that they can either
stabilize the normally folded structure or disrupt the folding
pathway, which leads to a harmful protein. Thus, knowing
exact 3D shapes will help to design drugs.

Determining the functionality of a protein molecule from
amino acid sequence remains a central problem in computa-
tional biology, molecular biology, biochemistry, and physics.
A system of differential equations is used to describe the
forces, which affect the folding. It is very complicate and
difficult to be solved. Even the experimental determinationof
these conformations is often difficult and time consuming. It is
common practice to use models that simplify the search space
of possible conformation. The aim is to find a conformation,

which is close to the real one and than it to be specify
using system of differential equations. So, as closer is the
conformation, as less complex is the system of differential
equations. Thus the computational time decreases. These
models try to generally reflect different global characteristics
of protein structures. In the hydrophobic-polar (HP) model
[4] the primary amino acid sequence of a protein (which
can be represented as a string over twenty-letter alphabet)is
abstracted to a sequence of hydrophobic (H) and polar (P)
residues that is represented as a string over the letter H and
P. It describes the proteins based on the fact that hydrophobic
amino acids tend to be less exposed to the aqueous solvent
than the polar ones, thus resulting in the formation of a
hydrophobic core in the spatial structure. In the model, the
amino acid sequence is abstracted to a binary sequence of
monomers that are either hydrophobic or polar. The structure
is a chain whose monomers are on the vertices’s of a three
dimensional cubic lattice. The free energy of a conforma-
tion is defined as the negative number of non-consecutive
hydrophobic-hydrophobic contacts. A contact is defined as two
non-consecutive monomers in the chain occupying adjacent
sites in the lattice. In spite of its apparent simplicity, finding
optimal structures of the HP model on a cubic lattice is NP-
complete problem [2].

Ant Colony Optimization (ACO) is a population-based
stochastic search method for solving a wide range of combi-
natorial optimization problems. ACO is based on the concept
of indirect communication between members of a population
through interaction with the environment. Ants indirectly
communicate with each other by depositing pheromone trails
on the ground and thereby influencing the decision processes
of other ants. From the computational point of view, ACO is an
iterative construction search method in which a populationof
simple agents (ants) repeatedly constructs candidate solutions
to a given problem. This construction process is probabilis-
tically guided by heuristic information on the given problem
instances as well as by a shared memory containing experience
gathered by the ants in previous iterations.

This work is an investigation of the HP model in a three
dimensional cubic lattice using an ACO as a tool to find the op-
timal conformation for a given sequence. The achieved results
are evaluated and compared with other metaheuristic methods
using 10 sequences of 48 monomers from the literature and
with real proteins with known folding.

The paper is organized as follows: the problem is de-
scribed in section 2. The ACO algorithm is explained
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in section 3. The achieved results are discussed in sec-
tion 4. The paper ends with a summary of the conclu-
sions.

II. T HE PROTEIN FOLDING PROBLEM

Efforts to solve the protein folding problem have tradition-
ally been rooted in two schools of thought. One is based on the
principles of physics: that is, the thermodynamic hypothesis,
according to which the native structure of the protein corre-
sponds to the global minimum of its free energy. The other
school of thought is based on the principles of evolution. Thus
methods have been developed to map the sequence of one
protein (target) to the structure of another protein (template),
to model the overall fold of the target based on that of the
template and to infer how the target structure will be changed,
related to the template, as a result of substitutions [1].

Accordingly methods for protein-structure prediction has
been divided into two classes: de novo modeling and com-
parative modeling. The de novo approaches can be further
subdivided, those based exclusively on the physics of the
interactions within the polypeptide chain and between the
polypeptide and solvent, using heuristic methods [9], [10],
and knowledge-based methods that utilize statistical potential
based on the analysis of recurrent patterns in known protein
structures and sequences. The comparative modeling models
structure by copying the coordinates of the templates in the
aligned core regions. The variable regions are modeled by
taking fragments with similar sequences from a database [1].

The processes involving in folding of proteins are very
complex and only partially understood, thus the simplified
models like Dill’s HP model have become one of the major
tools for studying proteins [4]. The HP model is based on
the observation that hydrophobic interconnection is the driving
force for protein folding and the hydrophobicity of amino acids
is the main force for development of native conformation of
small globular proteins. In the HP model, the primary amino
acid sequence of a protein is abstracted to a sequence of hy-
drophobic (H) and polar (P) residues, amino acid components.
The protein conformations of this sequence are restricted to
self-avoiding paths on 3 dimensional sequence lattice. Oneof
the most common approaches to protein structure prediction
is based on the thermodynamic hypothesis which states that
the native state of the protein is the one with lowest Gibbs
free energy. In the HP model, the energy of a conforma-
tion is defined as a number of topological contacts between
hydrophobic amino acid that are not neighbors in the given
sequence. More specifically a conformationc with exactly n

such H-H contacts has free energyE(c) = n.(−1). The 3D HP
protein folding problem can be formally defined as follows.
Given an amino acid sequences = s1s2 . . . sn, find an energy
minimizing conformation ofs, i.e. find cs

∈ C(s) such that
Es = E(cs) = minc∈C(s) E(c), whereC(s) is the set of all
valid conformations for s. It was proved that this problem is
NP-hard [2].

A number of well-known heuristic optimization methods
have been applied to the 3D protein folding problem including

Evolutionary Algorithm (EA) [9], Monte Carlo (MC) algo-
rithm [10] and Ant Colony Optimization (ACO) algorithm [7].
An early application of EA to protein structure prediction was
presented by Unger and Moult [11]. Their EA incorporates
characteristics of Monte Carlo methods. Currently among the
best known algorithms for the HP protein folding problem
is Pruned-Enriched Rosenblum Method (PERM) [8]. Among
these methods are the Hydrophobic Zipper (HZ) method
[5] and the Constraint-based Hydrophobic Core Construc-
tion Method (CHCCM) [12]. The Core-direct chain Growth
method (CG) [3] biases construction towards finding a good
hydrophobic core by using a specifically designed heuristic
function.

III. ACO A LGORITHM FOR PROTEIN FOLDING PROBLEM

Real ants foraging for food lay down quantities of phero-
mone (chemical cues) marking the path that they follow. An
isolated ant moves essentially at random but an ant encoun-
tering a previously laid pheromone will detect it and decide
to follow it with high probability and therefore reinforce it
with a future quantity of pheromone. The repetition of the
above mechanism represents the auto-catalytic behavior ofreal
ant colony where the more the ants follow a trail, the more
attractive that trail becomes.

The ACO algorithm uses a colony of artificial ants that
behave as co-operative agents in a mathematical space where
they are allowed to search and reinforce path ways (solutions)
in order to find the optimal ones. The problem is represented
by graph and the ants walk on the graph to construct solutions.
After initialization of the pheromone trails, ants construct
feasible solutions and the pheromone trails are updated. At
each step ants compute a set of feasible moves and select
the best one (according to some probabilistic rules) to carry
out the rest of the tour. The transition probability is based
on the heuristic information and pheromone trail level of
the move. The higher the value of the pheromone and the
heuristic information, the more profitable is to select this
move and resume the search. In the beginning, the initial
pheromone level is set to a small positive constant valueτ0 and
then ants update this value after completing the construction
stage. ACO algorithms adopt different criteria to update the
pheromone level. In our implementation Ant Colony System
(ACS) approach is used [6]. In ACS the pheromone updating
consists of two stages: local update and global update. While
ants build their solutions, at the same time they locally update
the pheromone level of the visited paths by applying the local
update rule as follows:

τij ← (1 − ρ)τij + ρτ0 (1)

Where τij is an amount of the pheromone on the arc(i, j)
of the 3D cube lattice,ρ is a persistence of the trail and the
term(1−ρ) can be interpreted as trail evaporation. The aim of
the local update rule is to make better use of the pheromone
information by dynamically changing the desirability of edges.
Using this rule, ants will search in a wide neighborhood of
the best previous solution. As is shown in the formula, the
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TABLE I
STANDARD BENCHMARK INSTANCES

1 HPHHPPHHHHPHHHPPHHPPHPHHPHPHHPPHHPPPHPPPPPPPPHHP

2 HHHHPHHPHHHHHPPHPPHHPPHPPPPPPHPPHPPPHPPHHPPHHHPH

3 PHPHHPHHHHHHPPHPHPPHPHHPHPHPPPHPPHHPPHHPPHPHPPHP

4 PHPHHPPHPHHHPPHHPHHPPPHHHHHHPPHPHHPHPHPPPHPPHPHP

5 PPHPPPHPHHHHPPHHHHPHHPHHHPPHPHPHPPHPPPPPPHHPHHPH

6 HHHPPPHHPHPHHPHHPHHPHPPPPPPPHPHPPHPPPHPPHHHHHHPH

7 PHPPPPHPHHHPHPHHHHPHHPHHPPPHPHPPPHHHPPHHPPHHPPPH

8 PHPHPPPPHPHPHPPHPHHHHHHPPHHHPHPPHPHHPPHPHHHPPPPH

9 PHPHPPPPHPHPHPPHPHHHHHHPPHHHPHPPHPHHPPHPHHHPPPPH

10 PHHPPPPPPHHPPPHHHPHPPHPHHPPHPPHPPHHPPHHHHHHHPPHH

pheromone level on the paths is highly related to the value of
evaporation parameterρ. The pheromone level will be reduced
and this will reduce the chance that the other ants will select
the same solution and consequently the search will be more
diversified. When all ants have completed their solutions, the
pheromone level is updated by applying the global updating
rule only on the paths that belong to the best solution since
the beginning of the trials as follows:

τij ← (1 − ρ)τij + ∆τij , (2)

where∆τij =

{

−Egb if (i, j) ∈ best solution
0 otherwise

The Egb is the free energy of the best folding. This global
updating rule is intended to provide a greater amount of
pheromone on the paths of the best solution, thus intensify
the search around this solution.

There are six possible positions on the 3D lattice for every
amino acid. They are the neighbor positions of the precedence
amino acid. Since conformations are rotationally invariant, the
position of the first two amino acids can be fixed without loss
of generality. During the construction phase, ants fold a protein
from the left end of the sequence adding one amino acid at
a time based on the two sources of information: pheromone
matrix value, which represents previous search experience, and
heuristic information. The transition probability to select the
position of the next amino acid is given as:

Pij =
τα
ijη

β
ij

∑

k∈Unused τα
ikη

β
ik

(3)

Whereτij is the intensity of the pheromone deposited by each
ant on the path(i, j), α is the intensity control parameter,ηij

is the heuristic information equal to the number of new H-H
contacts if the positionj is chosen,β is the heuristic parameter.
Thus the higher the value ofτij andηij , the more profitable
is to put the next amino acid on the positionj. When the next
amino acid is polar, the probability isPij = 0. In this case the
position is chosen randomly between allowed positions. When
the set of allowed positions is empty, the ant does some steps
back and after that it continues construction of the solution.
On a Fig. 1 is the ACO algorithm.

Ant Colony Optimization

Initialize number of ants;
Initialize the ACO parameters;
while not end-conditiondo

for k=0 to number of ants
ant k starts from random node;
while solution is not constructeddo

ant k selects a node with probability;
end while

end for
Local search procedure;
Update-pheromone-trails;

end while

Fig. 1. Pseudocode for ACO

IV. EXPERIMENTAL RESULTS

Ten standard benchmark instances of length 48 for 3D HP
protein folding shown in Table I have been widely used in
the literature [3], [7], [9]–[11]. Experiments on these standard
benchmark instances were conducted by performing a number
of independent runs for each problem instance, 20 runs. The
following parameter settings are used for all experiment as:
α = β = 1, ρ = 0.5. Furthermore, all pheromone values
were initialized toτ0 = 0.5 and a population of 5 ants were
used. The algorithm was terminated after 200 iterations. All
experiments were performed on IBM ThinkPad Centrino 1.8
GHz CPU, 512 MB RAM running SuSe Linux.

In Table II the achieved results by various heuristic algo-
rithms are compared. For every of the benchmark instances
the best found result by various methods is reported.

We compared the solution quality obtained by: hydrophobic
zipper (HZ) algorithm [5], the constrain-based hydrophobic
core construction (CHCC) method [13], the core-directed
chain growth (CG) algorithm [3], the contact interactions
(CI) algorithm [11], the pruned-enriched Rosenbluth method
(PERM) [7], the ACO algorithm of Hoos (ACO) [10] and
the ACS approach presented in this paper. For ACS the best
found result and the average result over 20 runs are reported.
In the majority of the cases our average results are better
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TABLE II
COMPARISON OF3D PROTEIN FOLDING

Benchmark HZ CHCC CG CI PERM ACO
ACS

best result average result
1 31 32 32 32 32 32 48 35.15
2 32 34 34 33 34 34 49 36
3 31 34 34 32 34 34 43 32.6
4 30 33 33 32 33 33 43 30.6
5 30 32 32 32 32 32 43 35.15
6 29 32 32 30 32 32 43 32.75
7 29 32 32 30 32 32 42 33.8
8 29 31 31 30 31 31 42 32.95
9 31 34 33 32 34 34 46 34.44
10 33 33 33 32 33 33 46 36.45

than the best found results by other methods. And for all
of the cases our best result is better than the best result
of other methods. In ACO a local search procedure is used
to improve the results. ACS approach is used without local
search procedure. The main differences between ACO and
ACS implementations are the location of the polar amino
acids, the construction of the heuristic information and the
pheromone updating. In ACO the authors put the polar amino
acids on same direction as precedence amino acid. In our
ACS we put the polar amino acids in random way, thus we
give to the ants more possibilities in a search process. The
main disadvantage of heuristic methods, as it is mentioned
by other authors, is that they achieve good folding for short
proteins only. For illustration, we compare two real proteins
with known folding and the folding achieved by our ACS
algorithm, which outperforms others on benchmark tests. Like
test problems we choose Hepsidin and c-src Tyrosine Kinase
Sh3 Domain (SrcSH3).

The Hepsidin consists of 21 amino acids: GCRFCCNCCP-
NMSGCGVCCRP. His folding comprises two crossed sheets
and unstructured part between them (see Fig. 2).

The HP representation of the Hepsidin is: HPPHPPPPPH-
PHPHPHHPPPH. By our ACS algorithm we achieve the 3D
folding represented on Fig. 3. The nodes represent amino acids
and the lines represent their succession. We observe two tense,
orthogonally situated parts. One of them consists of 3 amino
acids and other consists of 4 amino acids. Between them we
observe unstructured part. Thus we can conclude that there
is high similarity between the real Hepsidin folding and this
obtained by our algorithm.

The SrcSH3 protein consists of 62 amino acids. It folding
comprise two long parallel situated sheets like a hairpin inside
the protein and short sheets at the beginning and at the end
of the protein, which are parallel each other and orthogonal
to the hairpin, see Fig. 4.

By our ACS algorithm we achieve a folding represented on
Fig. 5. The achieved H-H contacts are 19. We observe that
there is not similarity between real folding and this achieved
by our algorithm. Thus we prove the conclusion of other
works [10], that heuristic methods are good for folding short
proteins only. Therefore we decide to cut the HP chain of
the SrcSH3 protein to short parts consisting of about 10-11

Fig. 2. Hepsidin
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Fig. 3. ACS Hepsidin

amino acids. We apply our ACS algorithm on every short
part and at the end we assemble the folded parts to fold
entire protein, see Fig. 6. The achieved H-H contacts are 20.
We observe two tense long parallel parts like hairpin. One
of them consists of 8 and other 7 amino acids. At one of the
ends we observe short tense part orthogonal to the hairpin.
Other protein parts are unstructured. Thus we can conclude
that there is high similarity with real folding of this protein.
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Fig. 4. Tyrosine SrcSH3 folding
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Fig. 5. ACS Tyrosine SrcSH3 folding
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Fig. 6. Partially Tyrosine SrcSH3 folding

V. CONCLUSION

Ant Colony System approach can be successfully applied to
the 3D protein folding problem. Our algorithm outperforms the
weel known from the literature methods. We have shown that
the components of the algorithm contribute to its performance.
In particular, the performance is affected by the heuristic
function and selectivity of pheromone updating. The folding
achieved by our algorithm is very similar to the real protein
folding when it is applied on short proteins. When the protein
is long, first we cut it on short parts, then we apply the
algorithm on every one of the parts separately, finally we
assemble the protein parts. Thus the achieved folding has high
similarity to the real one. The obtained results are encouraging
and the ability of the developed algorithm to generate rapidly
high-quality solutions can be seen. In the future we will
develope and improve the folding algorithm. The aim is to
achieve more realistic folding.
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