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3D Protein Structure Prediction

Stefka Fidanova and Ivan Lirkov

Abstract. The protein folding problem is a fundamental prob-
lem in computational molecular biology and biochemical physics.
The high resolution 3D structure of a protein is the key to the
understanding and manipulating of its biochemical and cellular
functions. All information necessary to fold a protein to its na-
tive structure is contained in its amino-acid sequence. Even un-
der simplified models, the problem is NP-hard and the standard
computational approaches are not powerful enough to search for
the correct structure in the huge conformation space. Due to the
complexity of the protein folding problem simplified models such
as hydrophobic-polar (HP) model have become one of the major
tools for studying protein structure. Various optimization meth-
ods have been applied on the folding problem including Monte
Carlo methods, evolutionary algorithm, ant colony optimization
algorithm. In this work we develop an ant algorithm for 3D HP
protein folding problem. It is based on very simple design choices
in particular with respect to the solution components reinforced
in the pheromone matrix. The achieved results are compared fa-
vorably with specialized state-of-the-art methods for this problem.
Our empirical results indicate that our rather simple ant algorithm
outperforms the existing results for standard benchmark instances
from the literature. Furthermore, we compare our folding results
with proteins with known folding.
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1 Introduction

The number of amino acids and their sequence give a protein its individual
characteristics. The number of amino acids in each protein ranges approxi-
mately between 20 and 40000, although most proteins are around hundred
amino acids in length. Each protein’s sequence of amino acids determines
how it folds into a unique three dimensional structure that is its minimum
energy state. Knowledge of 3D structure of proteins is crucial to pharma-
cology and medical sciences for the following important reasons. Most drugs
work by attaching themselves to a protein so that they can either stabilize
the normally folded structure or disrupt the folding pathway, which leads to
a harmful protein. Thus, knowing exact 3D shapes will help to design drugs.

Determining the functionality of a protein molecule from amino acid sequence
remains a central problem in computational biology, molecular biology, bio-
chemistry, and physics. A system of differential equations is used to describe
the forces, which affect the folding. It is very complicate and difficult to
be solved. Even the experimental determination of these conformations is
often difficult and time consuming. It is common practice to use models
that simplify the search space of possible conformation. The aim is to find
a conformation, which is close to the real one and then to specify it us-
ing system of differential equations. So, as closer is the conformation, as
less complex is the system of differential equations. Thus the computational
time decreases. These models try to generally reflect different global char-
acteristics of protein structures. In the hydrophobic-polar (HP) model [4]
the primary amino acid sequence of a protein (which can be represented as
a string over a twenty-letter alphabet) is abstracted to a sequence of hy-
drophobic (H) and polar (P) residues that is represented as a string over the
letters H and P. It describes the proteins based on the fact that hydrophobic
amino acids tend to be less exposed to the aqueous solvent than the polar
ones, thus resulting in the formation of a hydrophobic core in the spatial
structure. In the model, the amino acid sequence is abstracted to a binary
sequence of monomers that are either hydrophobic or polar. The structure
is a chain whose monomers are on the vertices of a three dimensional cubic
lattice. The free energy of a conformation is defined as the negative number
of non-consecutive hydrophobic-hydrophobic contacts. A contact is defined
as two non-consecutive monomers in the chain occupying adjacent sites in
the lattice. In spite of its apparent simplicity, finding optimal structures of
the HP model on a cubic lattice is a NP-complete problem [2].

Ant Colony Optimization (ACO) is a population-based stochastic search
method for solving a wide range of combinatorial optimization problems.
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ACO is based on the concept of indirect communication between members
of a population through interaction with the environment. Ants indirectly
communicate with each other by depositing pheromone trails on the ground
and thereby influencing the decision processes of other ants. From the com-
putational point of view, ACO is an iterative construction search method in
which a population of simple agents (ants) repeatedly constructs candidate
solutions to a given problem. This construction process is probabilistically
guided by heuristic information on the given problem instances as well as
by a shared memory containing experience gathered by the ants in previous
iterations.

This work is an investigation of the HP model in a three dimensional cubic
lattice using an ACO as a tool to find the optimal conformation for a given
sequence. The achieved results are evaluated and compared with other meta-
heuristic methods using 10 sequences of 48 monomers from the literature and
with real proteins with known folding.

The paper is organized as follows: the problem is described in section 2. The
ACO algorithm is explained in section 3. In section 4 the achieved results
are discussed. The paper ends with a summary of the conclusions.

2 The Protein Folding Problem

Efforts to solve the protein folding problem have traditionally been rooted
in two schools of thought. One is based on the principles of physics: that is,
the thermodynamic hypothesis, according to which the native structure of
the protein corresponds to the global minimum of its free energy. The other
school of thought is based on the principles of evolution. Thus methods have
been developed to map the sequence of one protein (target) to the structure
of another protein (template), to model the overall fold of the target based
on that of the template and to infer how the target structure will be changed,
related to the template, as a result of substitutions [1].

Accordingly methods for protein-structure prediction has been divided into
two classes: de novo modelling and comparative modelling. The de novo
approaches can be further subdivided, those based exclusively on the physics
of the interactions within the polypeptide chain and between the polypeptide
and solvent, using heuristic methods [9, 10], and knowledge-based methods
that utilize statistical potential based on the analysis of recurrent patterns in
known protein structures and sequences. The comparative modelling models
structure by copying the coordinates of the templates in the aligned core
regions. The variable regions are modelled by taking fragments with similar
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sequences from a database [1].

The processes involved in folding of proteins are very complex and only par-
tially understood, thus the simplified models like Dill’s HP model have be-
come one of the major tools for studying proteins [4]. The HP model is
based on the observation that hydrophobic interconnection is the driving
force for protein folding and the hydrophobicity of amino acids is the main
force for development of native conformation of small globular proteins. In
the HP model, the primary amino acid sequence of a protein is abstracted
to a sequence of hydrophobic (H) and polar (P) residues, amino acid com-
ponents. The protein conformations of this sequence are restricted to self-
avoiding paths on 3 dimensional sequence lattice. One of the most common
approaches to protein structure prediction is based on the thermodynamic
hypothesis which states that the native state of the protein is the one with
lowest Gibbs free energy. In the HP model, the energy of a conformation is
defined as a number of topological contacts between hydrophobic amino acid
that are not neighbors in the given sequence. More specifically a conforma-
tion ¢ with exactly n such H-H contacts has free energy E(c) = n-(—1). The
3D HP protein folding problem can be formally defined as follows. Given an
amino acid sequence s = $15s... Sy, find an energy minimizing conformation
of s, i.e. find ¢® € C(s) such that E° = E(c®) = min.ec(s) £(c), where C(s)
is the set of all valid conformations for s. It was proved that this problem is
NP-hard [2].

A number of well-known heuristic optimization methods have been applied
to the 3D protein folding problem including Evolutionary Algorithm (EA)
[9], Monte Carlo (MC) algorithm [10] and Ant Colony Optimization (ACO)
algorithm [7]. An early application of EA to protein structure prediction
was presented by Unger and Moult [12]. Their EA incorporates charac-
teristics of Monte Carlo methods. Currently among the best known algo-
rithms for the HP protein folding problem is the Pruned-Enriched Rosen-
blum Method (PERM) [8]. Among these methods are the Hydrophobic Zip-
per (HZ) method [5] and the Constraint-based Hydrophobic Core Construc-
tion Method (CHCCM) [13]. The Core-direct chain Growth method (CG)
[3] biases construction towards finding a good hydrophobic core by using a
specifically designed heuristic function.

3 ACO Algorithm for Protein Folding Problem

Real ants foraging for food lay down quantities of pheromone (chemical cues)
marking the path that they follow. An isolated ant moves essentially at
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random but an ant encountering a previously laid pheromone will detect it
and decide to follow it with high probability and therefore reinforce it with
a future quantity of pheromone. The repetition of the above mechanism
represents the auto-catalytic behavior of real ant colony where the more the
ants follow a trail, the more attractive that trail becomes.
The ACO algorithm uses a colony of artificial ants that behave as co-operative
agents in a mathematical space where they are allowed to search and reinforce
path ways (solutions) in order to find the optimal ones. The problem is
represented by a graph and the ants walk on the graph to construct solutions.
After initialization of the pheromone trails, ants construct feasible solutions
and the pheromone trails are updated. At each step the ants compute a set
of feasible moves and select the best one (according to some probabilistic
rules) to carry out the rest of the tour. The transition probability is based
on the heuristic information and pheromone trail level of the move. The
higher the value of the pheromone and the heuristic information, the more
profitable is to select this move and resume the search. In the beginning,
the initial pheromone level is set to a small positive constant value 75 and
then ants update this value after completing the construction stage. ACO
algorithms adopt different criteria to update the pheromone level. In our
implementation Ant Colony System (ACS) approach is used [6]. In ACS the
pheromone updating consists of two stages: local update and global update.
While ants build their solutions, at the same time they locally update the
pheromone level of the visited paths by applying the local update rule as
follows:

7ij — (L= p)7i; + pTo (3.1)
Where 7;; is an amount of the pheromone on the arc (i,j) of the 3D cube
lattice, p is a persistence of the trail and the term (1 — p) can be interpreted
as trail evaporation. The aim of the local update rule is to make better use of
the pheromone information by dynamically changing the desirability of edges.
Using this rule, ants will search in a wide neighborhood of the best previous
solution. As is shown in the formula, the pheromone level on the paths is
highly related to the value of evaporation parameter p. The pheromone level
will be reduced and this will reduce the chance that the other ants will select
the same solution and consequently the search will be more diversified. When
all ants have completed their solutions, the pheromone level is updated by
applying the global updating rule only on the paths that belong to the best
solution since the beginning of the trials as follows:

Tij — (]_ — P)Tij + ATij, (32)

—Ey, if (4,7) € best solution

where AT;; = { 0 otherwise
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Table 1: Standard benchmark instances
HPHHPPHHHHPHHHPPHHPPHPHHPHPHHPPHHPPPHPPPPPPPPHHP

HHOHHPHHPHHHHHPPHPPHHPPHPPPPPPHPPHPPPHPPHHPPHHHPH
PHPHHPHHHHHHPPHPHPPHPHHPHPHPPPHPPHHPPHHPPHPHPPHP
PHPHHPPHPHHHPPHHPHHPPPHHHHHHPPHPHHPHPHPPPHPPHPHP
PPHPPPHPHHHHPPHHHHPHHPHHHPPHPHPHPPHPPPPPPHHPHHPH
HHHPPPHHPHPHHPHHPHHPHPPPPPPPHPHPPHPPPHPPHHHHHHPH
PHPPPPHPHHHPHPHHHHPHHPHHPPPHPHPPPHHHPPHHPPHHPPPH
PHPHPPPPHPHPHPPHPHHHHHHPPHHHPHPPHPHHPPHPHHHPPPPH
PHPHPPPPHPHPHPPHPHHHHHHPPHHHPHPPHPHHPPHPHHHPPPPH
PHHPPPPPPHHPPPHHHPHPPHPHHPPHPPHPPHHPPHHHHHHHPPHH

OO0 | N || =W |-

—
o

The E, is the free energy of the best folding. This global updating rule is
intended to provide a greater amount of pheromone on the paths of the best
solution, thus intensify the search around this solution.

There are six possible positions on the 3D lattice for every amino acid. They
are the neighbor positions of the previous amino acid. Since conformations
are rotationally invariant, the position of the first two amino acids can be
fixed without loss of generality. During the construction phase, ants fold a
protein from the left end of the sequence adding one amino acid at a time
based on the two sources of information: pheromone matrix value, which rep-
resents previous search experience, and heuristic information. The transition
probability to select the position of the next amino acid is given as:

a3
TiiMij

Py =
S kcmara T
keUnused zk‘nzk

(3.3)

Where 7;; is the intensity of the pheromone deposited by each ant on the path
(7,7), « is the intensity control parameter, 7;; is the heuristic information
equal to the number of new H-H contacts if the position j is chosen, [ is
the heuristic parameter. Thus the higher the value of 7;; and 7;;, the more
profitable is to put the next amino acid on the position 7. When the next
amino acid is polar, the probability is F;; = 0. In this case the position
is chosen randomly between allowed positions. When the set of allowed
positions is empty, the ant does some steps back and after that it continues
construction of the solution. The ACO algorithm is presented on Fig. 1.
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Ant Colony Optimization

Initialize number of ants;
Initialize the ACO parameters;
while not end-condition do
for k=0 to number of ants
ant k starts from random node;
while solution is not constructed do
ant k selects a node with a probability;
end while
end for
Local search procedure;
Update-pheromone-trails;
end while

Figure 1: Pseudo-code for ACO

4 Experimental Results

Ten standard benchmark instances of length 48 for 3D HP protein folding
shown in Table 1 have been widely used in the literature [3,7,9,10,12]. Exper-
iments on these standard benchmark instances were conducted by performing
20 independent runs for each problem instance. The following parameter set-
tings are used for all experiment as: a = 3 = 1, p = 0.5. Furthermore, all
pheromone values were initialized to 7y = 0.5 and a population of 5 ants was
used. The algorithm was terminated after 200 iterations. All experiments
were performed on IBM ThinkPad Centrino 1.8 GHz CPU, 512 MB RAM
running SuSe Linux.

In Table 2 the achieved results by various heuristic algorithms are compared.
For every of the benchmark instances the best found result by various meth-
ods is reported.

We compared the solution quality obtained by: hydrophobic zipper (HZ)
algorithm [5], the constrain-based hydrophobic core construction (CHCC)
method [14], the core-directed chain growth (CG) algorithm [3], the contact
interactions (CI) algorithm [12], the pruned-enriched Rosenbluth method
(PERM) [7], the ACO algorithm of Hoos (ACO) [10] and the ACS approach
presented in this paper. For ACS the best found result and the average result
over 20 runs are reported. In the majority of the cases our average results
are better than the best found results by other methods. And for all of the
cases our best result is better than the best result of other methods. In ACO
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Table 2: Comparison of 3D protein folding

Beneh- 17 | cHCC | €@ | €1 | PERM | ACO | ACS
mark best average
1 31 32 32 | 32 32 32 48 35.15
2 32 34 34 | 33 34 34 49 36
3 31 34 34 | 32 34 34 43 32.6
4 30 33 33 | 32 33 33 43 30.6
5 30 32 32 | 32 32 32 43 35.15
6 29 32 32 | 30 32 32 43 32.75
7 29 32 32 | 30 32 32 42 33.8
8 29 31 31 | 30 31 31 42 32.95
9 31 34 33 | 32 34 34 46 34.44
10 33 33 33 | 32 33 33 46 36.45

a local search procedure is used to improve the results. ACS approach is
used without local search procedure. Which means that, if we combine our
ACS algorithm with local search procedure, we can improve the achieved
results. The main differences between ACO and ACS implementations are
the location of the polar amino acids, the construction of the heuristic in-
formation and the pheromone updating. In ACO the authors put the polar
amino acids on same direction as precedence amino acid, which is not the
case in the nature. In our ACS we put the polar amino acids in a random
way, thus we give to the ants more possibilities in a search process. We start
the folding from the left end of the amino-acid sequence as it is done in the
nature. In ACO algorithm authors start the folding from random amino acid
in the middle of the protein chain. In our algorithm we take into considera-
tion the real folding in the nature and as a result we achieve better folding
with respect to the other algorithms. For heuristic information we use the
number of new H-H contacts. In ACO algorithm the heuristic information
is defined according to the Boltzman distribution as n = ™", where 7 is a
parameter and h is the number of new H-H contacts. After each construction
phase we update the pheromone according ACS approach and they update
the pheromone according MMAS approach [11].

For illustration, we compare two real proteins with known folding and the
folding achieved by our ACS algorithm, which outperforms others on bench-
mark tests. Like test problems we choose Hepsidin and c-src Tyrosine Kinase
Sh3 Domain (SrcSH3).

The Hepsidin consists of 21 amino acids: GCRFCCNCCPNMSGCGVCCRP.
His folding comprises two crossed sheets and unstructured part between them
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(see Fig. 2).

Figure 2: Hepsidin

The HP representation of the Hepsidin is: HPPHPPPPPHPHPHPHHPPPH.
By our ACS algorithm we achieve the 3D folding represented on Fig. 3. The
nodes represent amino acids and the lines represent their succession. We
observe two tense, orthogonally situated parts. One of them consists of 3
amino acids and other consists of 4 amino acids. Between them we observe
an unstructured part. Thus we can conclude that there is high similarity
between the real Hepsidin folding and this obtained by our algorithm.

The main disadvantage of heuristic methods, as it is mentioned by other
authors, is that they achieve good folding for short proteins only. Therefore
for long proteins we cut the protein chain on shorter sub-chains. We apply
folding algorithm on every subchain and at the end we assemble folded parts
to fold entire protein.

The SrcSH3 protein consists of 62 amino acids. Its folding comprises two long
parallelly situated sheets like a hairpin inside the protein and short sheets
at the beginning and at the end of the protein, which are parallel each other
and orthogonal to the hairpin, see Fig. 4.

By our ACS algorithm we achieve a folding represented on Fig. 5. The
achieved H-H contacts are 19. We observe that there is not similarity between
real folding and this achieved by our algorithm. Thus we prove the conclusion
of other works [10], that heuristic methods are good for folding short proteins
only. Therefore we decided to cut the HP chain of the SrcSH3 protein to short
parts consisting of about 10-11 amino acids. We apply our ACS algorithm
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Figure 3: ACS Hepsidin

Figure 4: Tyrosine SrcSH3 folding

on every short part and at the end we assemble the folded parts to fold entire
protein, see Fig. 6. The achieved H-H contacts are 20. We observe two tense
long parallel parts like hairpin. One of them consists of 8 and other 7 amino
acids. At one of the ends we observe short tense part orthogonal to the
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Figure 5: ACS Tyrosine SrcSH3 folding

hairpin. Other protein parts are unstructured. Thus we can conclude that
there is a high similarity with the real folding of this protein.

5 Conclusion

Ant Colony System approach can be successfully applied to the 3D protein
folding problem. Our algorithm outperforms well known methods from the
literature. We have shown that the components of the algorithm contribute
to its performance. In particular, the performance is affected by the heuristic
function and selectivity of pheromone updating. The folding achieved by our
algorithm is very similar to the real protein folding when it is applied on
short proteins. When the protein is long, first we cut it on short parts,
then we apply the algorithm on every one of the parts separately, finally we
assemble the protein parts. Thus the achieved folding has high similarity
to the real one. The obtained results are encouraging and the ability of the
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Figure 6: Partially Tyrosine SrcSH3 folding

developed algorithm to generate rapidly high-quality solutions can be seen.
In the future we will develop and improve the folding algorithm. The aim is
to achieve more realistic folding.
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