
Simulated Annealing for Grid Scheduling Problem

Stefka Fidanova
Institute of Parallel Processing-BAS, Acad. G. Bonchev str. Bl. 25A, 1113 Sofia, Bulgaria

E-mail: stefka@parallel.bas.bg

Abstract

Grid computing is a form of distributed
computing that involves coordinating and sharing
computing, application, data storage or network
resources across dynamic and geographically
dispersed organizations. The goal of grid tasks
scheduling is to achieve high system throughput
and to match the application need with the
available computing resources. This is matching of
resources in a non-deterministically shared
heterogeneous environment. The complexity of
scheduling problem increases with the size of the
grid and becomes highly difficult to solve
effectively. To obtain good methods to solve this
problem a new area of research is implemented.
This area is based on developed heuristic
techniques that provide an optimal or near optimal
solution for large grids. In this paper we introduce
a tasks scheduling algorithm for grid computing.
The algorithm is based on simulated annealing
method. The paper shows how to search for the best
tasks scheduling for grid computing.

Keywords: Grid computing, Simulated Annealing,
Heuristics.

1.Introduction

Computational Grids are a new trend in
distributed computing systems. They allow the
sharing of geographically distributed resources in
an efficient way, extending the boundaries of what
we perceive as distributed computing. Various
sciences can benefit from the use of grids to solve
CPU-intensive problems, creating potential benefits
to the entire society. With further development of
grid technology, it is very likely that corporations,
universities and public institutions will exploit grids
to enhance their computing infrastructure. In recent
years there has been a large increase in grid
technologies research, which has produced some
reference grid implementations.

Task scheduling is an integrated part of parallel
and distributed computing. Intensive research has
been done in this area and many results have been
widly accepted. With the emergence of the
computational grid, new scheduling algorithms are

in demand for addressing new concerns arising in
the grid environment. In this environment the
scheduling problem is to schedule a stream of
applications from different users to a set of
computing resources to minimize the completion
time. The scheduling involves matching of
applications need with resource availability. There
are three main phases of scheduling on a grid [5].
Phase one is resource discovery, which generates a
list of potential resources. Phase two involves
gathering information about those resources and
choosing the best set to match the application
requirements. In the phase three the task is
executed, which includes file staging and cleanup.
In the second phase the choice of the best pairs of
tasks and resources is NP-complete problem [5]. A
related scheduling algorithm for the traditional
scheduling problem is Dynamic Level Scheduling
(DLS) algorithm [17]. DLS aims at selecting the
best subtask-machine pair for the next scheduling.
To select the best subtask-machine pair, it provides
a model to calculate the dynamic level of the task-
machine pair. The overall goal is to minimize the
computational time of the application. In the grid
environment the scheduling algorithm no longer
focuses on the subtasks of an application within a
computational host or a virtual organization
(clusters, network of workstations, etc.). The goal is
to schedule all the incoming applications to the
available computational power. In [2,10] some
simple heuristics for dynamic matching and
scheduling of a class of independent tasks onto a
heterogeneous computing system have been
presented. There are two different goals for task
scheduling: high performance computing and high
throughput computing. The former aim is
minimizing the execution time of each application
and latter aim is scheduling a set of independent
tasks to increase the processing capacity of the
systems over a long period of time. Our approach is
to develop a high throughput computing scheduling
algorithm.

The organization of the paper is as follows. In
section 2 the simulated annealing method is
discussed and it basic structure. In section 3 grid
scheduling algorithm is introduced. We make some
experimental tests and conclude this studying in
section 4 and 5.

2.Simulated annealing method

The Simulated Annealing (SA) is a
generalization of optimization method for examines
the equations of frozen states of n-body systems.
The original Metropolis scheme [11] was that an
initial state of a thermodynamic system was chosen
at energy E and temperature T, holding T constant
the initial configuration is performed and the
change of energy dE is computed. The current state
of the thermodynamic system is analogous to the
current solution to the combinatorial problem, the
energy equation for the thermodynamic system is
analogous to the objective function and ground state
is analogous to the global minimum. The key
objective of this paper is to find an effective
solution in a short period of time close to least cost
for a given grid using simulated annealing method.

SA is a heuristic method that has been
implemented to obtain good solutions of an
objective function defined on a number of discrete
optimization problems. This method has proved to
be a flexible local search method and can be
successfully applied to the majority of real-life
problems [1,3,4,9,12,15]. The origin of the
algorithm is in statistical mechanics. The
fundamental idea is to allow moves resulting in
solutions of worse quality than the current solution
in order to escape from local minimum. The
probability of doing such a move is declared during
the search. The algorithm starts by generating an
initial solution and by initializing the so-called
temperature parameter T. The temperature decrease
during the search process, thus at the beginning of
the search the probability of accepting uphill moves
is high and it gradually decreases. This process is
analogous to the annealing process of metals and
glass, which assume a low energy configuration
when cooled with an appropriate cooling schedule.
Regarding the search process, this means that the
algorithm is the result of two combined strategies:

• Random walk;
• Iterative improvement.

The first phase permits the exploration of the
search space. The advantages of the algorithm are:

• Simulated annealing is proved to
converge to the optimal solution of the
problem;

• An easy implementation of the
algorithm.

In order to implement SA for grid scheduling
problem a number of decisions and choices have to
be made. Firstly, the problem specific choices,
which determine the way in which the grid
scheduling, is modeled in order to fit into the SA
framework. In other words, it involves the
definition of the solution space Q and neighborhood
structure I, the form of the objective function C(V)
and the way in which a starting solution V is
obtained. Secondly, the generic choices, which

govern the working of the algorithm itself, are
mainly concerned with the components of the
cooling parameters: control parameter T and its
initial starting value, the cooling rate F and the
temperature update function, the number of
iterations between decreases L and the condition
under which the system will be terminated [14,15].
The performance of the achieved result is highly
dependent on the right choice of both specific and
generic choices.

The SA procedure used in this work is
designed and developed essentially from practical
experience and requirement of the grid. A simple
constructive procedure is proposed to obtain an
initial (starting) feasible scheduling V for the grid.
The aim of this simple procedure is to obtain
quickly an initial schedule. The structure of the SA
algorithm is shown below:

1.The problem Specific Decisions
Step 1. Formulation the problem parameters;
Step 2. Determination of the initial schedule,
generate a feasible solution V;
2. The Problem Generic Decisions
Step 3. Initialization the cooling parameters:

• Set the initial value of the temperature
parameter, T=8;

• Set the temperature length L=3;
• Set the cooling rate F=0.9;
• Set the number of iterations K=0;

3. The Generation Mechanism, Selecting and
Acceptance Strategy of Generated Neighbors
Step 4.

• Select a neighbor V’ of V where
V’∊I(V)

• Let C(V’)=the cost of the schedule V’
• Compute the move value ∆=C(V’)-

C(V)
Step 5.

• IF ∆≤0 accept V’ as a new solution
and set V=V’

• ELSE
• IF e-∆/T>θ set V=V’
• Where θ is a uniform random number

0<θ<1
• OTHERWISE retain the current

solution V
4. Updating the Temperature
Step 6. Updating the annealing scheduling
parameters using the cooling schedule
Tk+1=F*Tk k=1,2,…
5. Termination of the Solution
Step 7. IF the stopping criteria is met THEN
Step 8.

• Show the output
• Declare the best solution
• OTHERWOISE GO to step 4.

3.Grid scheduling model

Our scheduling algorithm is designed for

distributed systems shared asynchronously by both
remote and local users.

3.1.Grid model

The grid considered in this study is composed

of a number of hosts, each composed of several
computational resources, which may be
homogeneous or heterogeneous. The grid scheduler
does not own the local hosts, therefore does not
have control over them. The grid scheduler must
make best effort decisions and then submit the task
to the hosts selected, generally as a user.
Furthermore, the grid scheduler does not have
control over the set of tasks submitted to the grid, or
local tasks submitted to the computing host directly.
This lack of ownership and control is the source of
many of the problems yet to be solved in this area.

3.2. Grid scheduling algorithm

While there are scheduling request from

applications, the scheduler allocates the application
to the host by selecting the best match from the
pool of applications and pool of the available hosts.
The selecting strategy can be based on the
prediction of the computing power of the host [8].
We will review some terms and definitions [10,13].

The expected execution time ETij of task ti on
machine mj has no load when ti is assigned. The
execution time CTij of the task ti on machine mj is
defined as the wall-clock time at which mj
completes ti (after having finished any previously
assigned tasks). Let m be the total number of the
machines. Let S be the set containing the tasks. Let
the beginning time of ti be bi. From the above
definitions CTij = bi + ETij. The makespan for the
complete schedule is then defined as max ti∊K(CTij).
Makespan is a measure of the throughput of the
heterogeneous computing system. The objective of
the grid scheduling algorithm is to minimize the
makespan. It is well known that the problem of
deciding on an optimal assignment of tasks to
resources is NP-complete. We develop heuristic
algorithm based on simulated annealing to solve
this problem.

Existing mapping heuristics can be divided into
two categories: on-line mode and batch mode. In
the on-line mode, a task is mapped onto a machine
as soon as it arrives at the mapper. In the batch
mode, tasks are not mapped onto the machines as
they arrive, instead they are collected in a set that is
examined for mapping at pre-scheduled times
called mapping events. This independent set of
tasks that is considered for mapping at mapping
events is called meta-tasks. In the on-line mode

heuristics, each task is considered only for
matching and scheduling. The minimum
completion time heuristic assigns each task to the
machine so that the task will have the earliest
computational time [6]. The minimum execution
time heuristic assigns each task to the machine that
performs tasks computation in the least amount of
execution time. In batch mode, the scheduler
considers a meta-task for matching and scheduling
at each mapping event. This enables the mapping
heuristics to possibly make better decision, because
the heuristics have the resource requirement
information for the meta-task and known the
expected execution time of a larger number of
tasks. Our heuristic algorithm is for batch mode.

The most important part in the application of
SA is generation of the initial solution and creating
a set of neighbors. We will describe in details the
initial solution generation and creating of the
neighbor set for grid scheduling algorithm.

Let the number of the tasks in the set of tasks is
great than the number of machines in the grid. The
result will be triples (task, machine, starting time).
The function free(j) – shows when the machine mj
will be free. To generate initial solution we use
greedy heuristic, the first task in the set will be
executed on the first free machine, the machine
with minimal free(j) function. The value of the
free(j) function is updated and the same method is
used for the second task in the set and so on. If the
task ti is executed on the machine mj then the
starting time of ti becomes bi = free(j)+1 and the
new vlue of the function free(j) becomes free(j)= bi
+ ETij= CTij. So the initial solution is a feasible
solution.

After the generation of a feasible solution the
set of neighbors will be created. As is written above
the solution is triple (ti , mj, bi).We can think about
a solution like a matrix with three columns, the fist
is the tasks, the second is the corresponding
machines and the third is corresponding starting
times. The order in the columns is by starting time.
Thus the tasks with early starting time are before
tasks with later starting time. To create new
solution we will swap two of the tasks. It changes
the starting times and the value of the free(j)
functions and reorder succeeding tasks.

Two kind of set of tasks are needed: set of
scheduled tasks and set of arrived and unscheduled
tasks. When we start the execution of scheduled
tasks, we collect new arrived tasks in the set of
unscheduled tasks. If some of the machines starts to
execute the last scheduled on it task, schedule
algorithm is started over the tasks from the set of
unscheduled tasks. When we start the next schedule
the starting time for a machine is the end time for
the same machine from the previous schedule. Thus
it is guaranteed that the machines will be fully
loaded. If some machine becomes out of service,
we move all unexecuted tasks, scheduled on this

machine in the set of unscheduled tasks and we
schedule the tasks on other machine. The tasks,
submitted to the computing nodes bypassing the
scheduler, are ran between the tasks of two
scheduled sets and when the free time is calculated,
there running time are taken in to account. Thus we
solve the problem in dynamic way.

4.Experimental results

In this section some experimental results are
reported. We compare the often used online
algorithm with explained simulated annealing
algorithm and ant colony optimization algorithm
(ACO), for grid scheduling problem [7], which is a
heuristic method too. In online mode the tasks are
in a queue towards their arriving time in a
scheduler. When some of the machine is free, the
first task in the queue is run on this machine. Thus
the order of the queue is important and it is arriving
order of the tasks on the scheduler. In the tests, the
time to send a task on a machine is ignored. To be
more realistic it is necessary to add the send time
from the scheduler to the machine, for online mode.

We compare our simulated annealing algorithm
with ant algorithm too. The both are applied on
batch mode and are offline methods. These are
intelligent methods for scheduling. In the both the
tasks first are collected in a set and after that they
are scheduled. Thus the arriving time of the tasks is
not important. The tasks scheduled on a same
machine form a local queue related with this
machine. The tasks queue is sent on the machine
during the running tasks from previous queue. Thus
the send time do not influence the makespan time.
If there is a cluster like a part of the grid, we look at
it like one machine, thus the problem becomes
sequential tasks scheduling problem.

 In our experimental testes we use 5
heterogeneous machines and 20 tasks. The
following parameters are used: initial temperature
8, final temperature 3, temperature length 3 and
cooling parameter 0.9 for all tests.

Table 1. Makespan for the execution by online-
mode, simulated annealing and ant colony

optimization algorithms
Online-mode Simulated annealing ACO

80 54 67
174 97 128
95 78 80

The results are in minutes. We observe

outperform of the heuristic algorithms comparing
with online mode. In online mode the arriving order
is crucial while in heuristic algorithms the arriving
order is not important and the most important is the
execution time of the tasks. Comparing the two

heuristic algorithms, simulated annealing achieves
better results.

5.Conclusion

To confront new challenges in tasks scheduling
in a grid environment, we present in this study
heuristic scheduling algorithm. The proposed
scheduling algorithm is designed to achieve high
throughput computing in a grid environment. This
is a NP-problem and to be solved needs an
exponential time. Therefore the heuristic algorithm,
which finds a good solution in a reasonable time, is
developed. In this paper heuristic algorithm based
on simulated annealing method is discussed and it
basic strategies for a grid scheduling are
formulated. This algorithm guarantees good load
balancing of the machines and it is applied in
dynamic way. In SA technique it is very important
how the set of neighbors is created. As a future
work we will try with various manner to create the
set of neighbors. Another research direction is to
create different heuristic based algorithms for
problems arising in grid computing.

Acknowledgements. Stefka Fidanova was
supported by the European Community project BIS
21++.

References

[1] E. Arts and P. Van Losrhoven, “Statistical Cooling: A
general Approach to Combinatorial Optimization
Problems”, Philips Journal of Research 40, 1985,193-
226.

[2] T. D. Braun, H. J. Siegel, N. Beck, L. Bolony, M.
Maheswaram, A. I. Reuther, P. J. Robertson, M. D. Theys
and B. Jao, “A Taxonomy for Describing Matching and
Scheduling Heuristics for Mixed-Machine Heterogeneous
Computing Systems”, IEEE Workshop on Advances in
Parallel and Distributed Systems, 1998, 330-335.

[3] V. Cerny, “A Thermodynamical Approach to the
Traveling Salesman problem: An Efficient Simulated
Annealing Algorithm”, Journal of Optimization Theory
and Applications 45, 41-51.

[4] K. Dowsland, “Variants of Simulated Annealing for
practical problem Solving”, V. Rayward-Smith editor,
Applications of Modern Heuristic Methods, Henley-on-
Thames: Alfred Walter Ltd., 1995.

[5] D. Fernandez-Baca, “Allocating Modules to
Processors in a Distributed System, IEEE Transactions
on Software Engineering 15(11), 1989, 1427-1436.

[6] F. R. Freund, M. Gherrity, S. Ambrosius, M. Camp-
Bell, M. Halderman, D Hensgen, E Keith, T. Kidd, M.
Kussow, J. D. Lima, F. Mirabile, L. Moore, B. Rust and
H. J. Siegel, “Scheduling Resources in Multi-User
Heterogeneous Computing Environments with

SmartNet”, IEEE Heterogeneous Computing Workshop,
1998, 184-199.

[7] S. Fidanova and M. Durchova, “Anr Algorithm for
Grid Scheduling Problem”, Large Scale Computing,
Lecture Notes in Computer Science No 3743, Springer,
germany,2006,405-412.

[8] L. Gong, X. H. Sun and E. Waston, “Performance
Modeling and Prediction of Non-Dedicated Network
Computing”, IEEE Transaction on Computer Vol 51(9),
2002.

[9] S. Kirkpatrick, C. D. Gelatt and P. M. Vecchi,
“Optimization by Simulated Annealing”, Science 220,
1983, 671-680.

[10] M. Maheswaran, S Ali, H. J. Siegel, D. hensgen and
R. Freund, “Dynamic Mapping of a Class of Independent
Tasks onto Heterogeneous Computing Systems”, 8th
IEEE Heterogeneous Computing Workshop (HCW’99),
San Juan, Puerto Rico, 1999, 30-44.

[11] N. metropolis, A. Rosenbluth, M. Rosenbluth, A.
Teller and E. Teller, “Equition of State Calculations by
Fast Computing Machines, Journal of Chemistry Physics
21(6), 1953, 1087-1092.

[12] I. H. Osman and C. N. Potts, “Simulated Annealing
for Permutation Flow-Shop Scheduling”, Omega 17,
1989, 551-557.

[13] M. Pinedo, Scheduling: Theory, Algorithms and
Systems, Prentice Hall, Englewood Clefts, NJ, 1995.

[14] C. R. Reeves (editor), Modern Heuristic Techniques
for Combinatorial Problems, Oxford, England, Blackwell
Scientific publications, 1993.

[15] V. V. Rene, Applied Simulated Annealing, Berlin,
Springer, 1993.

[16] M. J. Schopf, “General Architecture for Scheduling
on the Grid”, Special issue of JPDC on Grid Computing,
2002.

[17] G. C. Sih and E. A. Lee, “A Compile-Time
Scheduling Heuristic for Inter Connection-Constrained
Heterogeneous Processor Architectures”, IEEE
transactions Parallel and Distributed Systems Vol 4,
1993, 175-187.

