
COMPUTATIONAL CHALLENGES IN THE NUMERICAL

TREATMENT OF LARGE AIR POLLUTION MODELS

I. DIMOV�, K. GEORGIEVy , TZ. OSTROMSKY� , R. J. VAN DER PASz , AND Z.

ZLATEVx

Abstract.

The air pollution, and especially the reduction of the air pollution to some acceptable levels,
is an important environmental problem, which will become even more important in the next 10-20
years. This problem can successfully be studied only when high-resolution comprehensive models are
developed and used on a routinely basis. However, such models are very time-consuming, also when
modern high-speed computers are available. Indeed, if an air pollution model is to be applied on a
large space domain by using �ne grids, then its discretization will always lead to huge computational
problems. Assume, for example, that the space domain is discretized by using a (480x480) grid
and that the number of chemical species studied by the model is 35. Then several systems of
ordinary di�erential equations containing 8064000 equations have to be treated at every time-step
(the number of time-steps being typically several thousand). If a three-dimensional version of the
same air pollution model is to be used, then the above �gure must be multiplied by the number of
layers. It is extremely di�cult to treat such large computational problems; even when the fastest
computers that are available at present are used.

There is an additional great di�culty which is very often underestimated (or even neglected)
when large application packages are moved from sequential computers to modern parallel machines.
The high-speed computers have normally a very complicated memory architecture and, therefore,
the task of producing an e�cient code for the particular high-speed computer that is available is
both extremely hard and very laborious.

The use of standard parallelization tools in the solution of the problems sketched above is dis-
cussed in this paper. Results obtained on di�erent types of parallel computers are given. It is
demonstrated that the new e�cient parallel algorithms allow us to solve more problems and bigger
problems.

Key words. Air pollution modelling, partial di�erential equations, �nite element method,
ordinary di�erential equations, predictor-corrector methods, parallel computations, shared memory
computers, distributed memory computers

AMS subject classi�cations. 65Y05, 65Y20, 65F50

1. Di�culties in the Treatment of Large Air PollutionModels. High pol-
lution levels (high concentrations and/or high depositions of certain harmful chemical
species) may cause damages to plants, animals and humans. Moreover, some eco-
systems can also be damaged (or even destroyed) when the pollution levels are very
high. This is why the pollution levels must be carefully studied in the e�orts to make
it possible

� to predict the appearance of high pollution levels, which may cause di�erent
damages in our environment and/or

� to decide what can be done in order to prevent the exceedance of prescribed
critical levels (or, in other words, to attempt to keep the harmful concentra-
tions and/or depositions under the prescribed acceptable limits).

�Central Laboratory for Parallel Processing, Bulgarian Academy of Sciences, Acad. G. Bonchev
Str. Bl. 25-A, 1113 So�a, Bulgaria (ivdimov@bas.bg), (ceco@cantor.bas.bg).

yVITO - TAP Centre for Remote Sensing and Atmospheric Processes, Boeretang 200, B-2400
Mol, Belgium (kris.georgiev@vito.be).

zHPC Application Performance Specialist, Sun Microsystems (ruud.vanderpas@sun.com).
xNational Environmental Research Institute, Frederiksborgvej 399, P. O. Box 358, DK-4000

Roskilde, Denmark (zz@dmu.dk).

1

The control of the pollution levels in di�erent highly developed and densely populated
regions in the world is an important task that has to be handled in a systematic way.
This is especially true for many regions in Europe and North America, but also
other parts of the world are under quick economic development at present and urgent
solutions of certain air pollution problems will soon be necessary also there. The
importance of this task has been steadily increasing during the last two decades. The
need to develop reliable and easily applicable control strategies for keeping harmful
air pollution levels under certain limits will become even more important in the next
two-three decades.

Large-scale air pollution models can successfully be used to design reliable control
strategies when these models produce reliable results about the pollution levels in
the studied region. The application of comprehensive models with di�erent types of
sensitivity tests is important in the e�orts

� to understand better the physical and chemical processes involved in the air
pollution models that are used either in di�erent scienti�c studies or in the
treatment of tasks whose solution is required by policy makers and

� to improve as much as possible the reliability of the control strategies that are
to be used for keeping the air pollution levels under the prescribed acceptable
limits.

The use of comprehensive models in many di�erent environmental studies is a
very challenging task. The major di�culties in the treatment of such models are:

� the need to carry out extensive computations,
� the need to store and handle very large input-output �les,
� the need to visualize the output data in order to be able to see the trends
and relationships hidden behind a great amount of digital data produced by
the models

� the need to validate the model results (to show that these are reliable).
We shall concentrate our attention in this paper to discussions of e�cient solutions

related to the �rst di�culty. The paper is organized as follows. A short description
of the air pollution model which is actually used in this study, the Danish Eulerian
Model, is given in Section 2. It should be emphasized, however, that the results
reported in this paper can be used also in connections with other large-scale air
pollution models. The role of the order in which the computations are carried out
when modern advanced computer architectures are used is discussed in Section 3. The
parallel computations for di�erent types of computers are described in Section 4. The
performance of the code on di�erent parallel computers are presented in Section 5.
Some examples for di�erent studies which we are able to carry out with the optimized
code are given in Section 6. Some conclusions and plans for future work are discussed
in Section 7.

2. Short Description of the Danish Eulerian Model. Large air pollution
models are normally described by systems of partial di�erential equations (PDE's):

@cs
@t

= �
@(ucs)

@x
�
@(vcs)

@y
�
@(wcs)

@z
(2.1)

+
@

@x

�
Kx

@cs
@x

�
+

@

@y

�
Ky

@cs
@y

�
+

@

@z

�
Kz

@cs
@z

�

+Es � (�1s + �2s)cs + Qs(c1; c2; : : : ; cq); s = 1; 2; : : : ; q;

2

where (i) the concentrations of the chemical species are denoted by cs, (ii) u; v and
w are wind velocities, (iii) Kx;Ky and Kz are di�usion coe�cients, (iv) the emission
sources are described by Es, (v) �1s and �2s are deposition coe�cients and (vi) the
chemical reactions are denoted by Qs(c1; c2; : : : ; cq) (the CBM IV chemical scheme,
which has been proposed in [11], is actually used in the Danish Eulerian Model [32]
that is considered in this paper).

2.1. Application of splitting techniques. It is di�cult to treat the system
of PDE's (2.1) directly. This is the reason for using di�erent kinds of splitting in
all known large-scale air pollution models. A splitting procedure, based on ideas
proposed in [18] and [19] is used in DEM. It leads, for s = 1; 2; : : : ; q, to �ve sub-
models, representing respectively the horizontal advection, the horizontal di�usion,
the chemistry (together with the emission terms), the deposition and the vertical
exchange:

@c
(1)
s

@t
= �

@(uc(1)s)

@x
�
@(vc(1)s)

@y
(2.2)

@c
(2)
s

@t
=

@

@x

Kx

@c
(2)
s

@x

!
+

@

@y

Ky

@c
(2)
s

@y

!
(2.3)

dc
(3)
s

dt
= Es + Qs(c

(3)
1 ; c

(3)
2 ; : : : ; c(3)q)(2.4)

dc
(4)
s

dt
= �(�1s + �2s)c

(4)
s(2.5)

@c
(5)
s

@t
= �

@(wc
(5)
s)

@z
+

@

@z

Kz

@c
(5)
s

@z

!
(2.6)

2.2. Space discretization of the sub-models. If the model is split into sub-
models (2.2) - (2.6), then the discretization of the spatial derivatives in the right-
hand-sides of the sub-models leads to the solution (successively at each time-step) of
�ve systems (i = 1; 2; 3; 4; 5) of ordinary di�erential equations (ODE's):

dg(i)

dt
= f (i)(t; g(i)); g(i) 2 RNx�Ny�Nz�Ns ; f (i) 2 RNx�Ny�Nz�Ns ;(2.7)

where Nx, Ny and Nz are the numbers of grid-points along the coordinate axes and
Ns = q is the number of chemical species. The functions f (i), i = 1; 2; 3; 4; 5, depend
on the particular discretization methods used in the numerical treatment of the dif-
ferent sub-models, while the functions g(i), i = 1; 2; 3; 4; 5, contain approximations of
the concentrations at the grid-points of the space domain (more details are given in
[32]).

2.3. Need for fast numerical algorithms and parallel computations. The
size of any of the �ve ODE systems (2.7) is equal to the product of the number of
the grid-points and the number of chemical species. It grows very quickly when the
number of grid-points and/or the number of chemical species are increased; see Table
2.1. It should be mentioned here that the models descretized at �ne grids, (288�288)

3

Table 2.1

Numbers of equations per system of ODE's that are to be treated at every time-step. The typical
number of time-steps is 3456 (when meteorological data covering a period of one month + �ve days
to start up the model is to be handled). The number of time-steps for the chemical sub-model is
even larger, because smaller step-sizes have to be used in this sub-model.

Number of species (32� 32� 10) (96� 96� 10) (288� 288� 10) (480� 480� 10)
1 10240 92160 829440 2304000
2 20480 184320 1658880 4608000
10 102400 921600 8394400 23040000
35 358400 3225600 29030400 80640000
56 573440 5160960 46448640 129024000
168 1720320 15482880 139345920 387072000

and (480�480), are at present used only as 2-D models. This means that the number
of equations is reduced by a factor of ten. Even in this simpli�ed situation it is very
di�cult to handle the arising huge computational tasks on the available computers.

Sometimes it is necessary to perform long simulation processes consisting of sev-
eral hundreds of runs (see, for example, [4] or [34]). At present these problems are
solved by the operational two-dimensional version of the Danish Eulerian Model (see
[32]). In this version the following values of the parameters are used: Nx = 96,
Ny = 96, Nz = 1, Ns = 35. This leads to the treatment of four ODE systems per
time-step; each of them contains 322560 equations. It is desirable to solve these sys-
tems in a more e�cient way. It is even more desirable to use the three-dimensional
version of the model ([33]) in such runs and/or to implement chemical schemes con-
taining more species (a chemical scheme with Ns = 35 is used in this paper). This
explains why the search for more e�cient numerical methods is continuing (the need
of such methods is emphasized, for example, in [26] and [32]). It is also very important
to exploit better the great potential power of the modern supercomputers.

3. Ordering the Computations. In the old days it was most important to
reduce the number of simple arithmetic operations as much as possible, because the
cost of performing an arithmetic operation was much greater than the cost of load-
ing and storing the quantities that are involved in it. In the modern computers the
situation is quite di�erent. The cost of loading and storing the quantities needed to
perform a given arithmetic operation depend essentially on the place in the memory
where the data are located. Practically all modern computers have some cache mem-
ory (or even several levels of cache memory), and it is important to work as long as
possible with data which are in cache (preferably in the fastest cache when several
levels of cache memory are available). The solution of this task is by no means easy.
However, if this task is successfully solved, then the computing time can be reduced
very considerably. The key issue here is to order the arithmetic operations so that the
same data are used as long as possible. It is described below how to order the arith-
metic operations in the most time-consuming part of the Danish Eulerian Model, the
chemical module, in an attempt to exploit the cache memory in a more e�cient way.
It should be stressed here that in fact a template which is relatively independent both
of the particular numerical method used in the chemical module and of the particular
computer is used.

First, it is necessary to show that the chemical module is indeed the most time-
consuming part of the computations. This is clearly seen from the results shown in
Table 3.1.

In order to reduce the computing time used in the chemical module it is worthwhile

4

Table 3.1

Computing times (measured in seconds) obtained when the �rst version of the code was run on
one processor of the IBM SMP computer. The parts of the computing time spent in the modules
(compared with the total time for the run) are given in percent.

Module Comp. time Percent
Chemistry 16147 83.09
Advection 3013 15.51
Initialization 2 0.00
Input operations 50 0.26
Output operations 220 1.13
Total time 19432 100.00

to divide the arrays, which are involved in this part of the computational process
into chunks and to carry out the computations by chunks. Assume that M is the
length of the leading dimension of the two-dimensional arrays used in the chemical
module. We want to divide these arrays into NCHUNKS chunks. If M is a multiple
of NCHUNKS, then the size of every chunks, i.e. the leading dimension of the
obtained smaller arrays, is NSIZE = M=NCHUNKS, and the following template
can be used in the computations.

DO ICHUNK=1,NCHUNKS

Copy chunk ICHUNK from some of the eight

large arrays into small two-dimensional

arrays with leading dimension NSIZE

DO J=1,NSPECIES

DO I=1,NSIZE

Perform the chemical reactions involving

involving species J for grid-point I

END DO

END DO

Copy some of the small two-dimensional

arrays with leading dimension NSIZE

into chunk ICHUNK of the corresponding

large arrays

END DO

Some results, which demonstrate the performance of the code when chunks of
di�erent sizes are used, are given in Table 3.2. These runs have been performed on
four typical computers: a vector processor (Fujitsu), a parallel computer with shared
memory (SGI ORIGIN 2000), a 8-processor Macintosh POWER PC cluster with
G4 450 MHz processors and a parallel computer, which can be used in both shared
memory mode and distributed memory mode (IBM SMP). All runs in Table 3.2 were
carried out by using one processor only. It is seen that (i) the particular computer
that is available has to be taken into account when the size of chunks is to be selected
and (ii) the proper selection of the size of the chunks leads normally to considerable
savings in computer time and storage (storage is saved because the leading dimensions
of the working arrays in the chemical part (the body of the double loop in the above
template) is reduced from M to NSIZE; NSIZE is normally considerably smaller
than M).

If the size of the chunks is maximal (9216 for the case where a 96x96 grid is used),
then the inner loops are very long. It is rather easy to vectorize these loops. Therefore

5

Table 3.2

Computing times (measured in seconds) obtained with di�erent chunks on three computers (using
one processor only).

Size of the chunks Fujitsu SGI ORIGIN 2000 Power Mac G4 IBM SMP
1 76964 14847 6952 10313
48 2611 12114 5792 5225

9216 494 18549 12893 19432

it should be expected to obtain best results on a vector computer. The results in Table
3.2 show that the maximal length of the chunks is the best choice when the vector
processor, Fujitsu, is used. The application of very small chunks, chunks of length 1,
corresponds to the straight-forward and commonly used procedure of writing a box
routine which performs all chemical reactions in a given grid-point and calling this
routine in a loop over all grid-points. It is seen from Table 3.2 that this approach is
a disaster when a vector processor is used (because the length of the inner loops is
only one).

For the three parallel computers the results when chunks of length 1 are used are
not very bad, but still it is more pro�table to use chunks of medium size (especially
on the IBM SMP computer).

It is clear that the optimal length of the chunks depends on the memory hier-
archy the computer. In particular, the cache size at a certain level is an important
parameter. Therefore, the length of the chunks, NSIZE, should be a parameter
which can be selected in the main program. In such a case, it will be relatively easy
to �nd a good value of this parameter by carrying out several tests. It should be
mentioned here that our experiments indicate that good results can be achieved for
many medium values of NSIZE. This is clearly seen from Fig. 1.

4. Preparation for Parallel Computations. It is very important to exploit in
the best possible way the great potential power of the modern supercomputers. This
is a very di�cult task when large-scale air pollution models are to be run, because

� the codes are very big, containing up to several hundreds of subroutines,
� a very large amount of input data (meteorological data and emission data)
have to be read and/or interpolated at every time-step and

� a very large amount of output data have to be prepared and stored for future
use.

The preparation of e�cient versions of the Danish Eulerian model for three types
of parallel computer architectures:

� parallel systems with multiple processors, a shared memory architecture and
cache coherent interconnect (we shall refer to computers of this type as parallel
computers with shared memory),

� parallel systems with a single processor per node, a distributed memory and
non-cache coherent interconnect (we shall refer to computers of this type as
parallel computers with distributed memory) and

� a hybrid combination of these, in which multiple shared memory systems are
coupled through a non-cache coherent interconnect (we shall refer to com-
puters of this type as more advanced parallel computers utilizing both shared
memory and distributed memory).

is sketched in this section.

6

4.1. Running the model on shared memory computers. OpenMP ([21])
directives are used when the code is run on parallel computers with shared memory.
The OpenMP directives are becoming standard directives that are supported by many
vendors. Therefore, it is easy (i) to get good results on di�erent shared memory
computers when such directives are used and (ii) to achieve a high degree of portability.

It is important to identify the parallel tasks and to group them in an appropriate
way when necessary. For the di�erent parts of the code this is done in the following
way:

64 96 92164608230411525763224168421 28814448

[x10 s]
TIME

3

40

20

60

80

100

120

140

160

CHUNK SIZE

Figure 1

Computing times obtained in running the 3-D version of DEM (discretized on a
96� 96 grid) on one processor of the SGI Origin 2000 computer.

� The horizontal advection and di�usion. It can easily be seen that,
after the splitting procedure, the performance of the horizontal advection can
be carried out independently for every chemical compound (and for the 3-D
version for every layer). This means that the number of parallel tasks is equal
to the number of chemical compounds (and to the product of the chemical
compounds and the layers when the 3-D version is used). The same is true
for the horizontal di�usion. Moreover, the advection and the di�usion parts
can be treated, as already mentioned in the previous section, together. Thus,
there are many parallel tasks in this part of the code and, moreover, the
parallel tasks are very big.

� The chemistry and deposition. These two processes can be carried out in
parallel for every grid-point. This means that there are many parallel tasks
(the number of parallel tasks is equal to the number of grid-points), but each
task is a small task. Therefore, the tasks should be grouped in an appropriate
way. This can be done by using chunks. Both the procedure of splitting the
data into chunks and the e�ect of using chunks are discussed in detail in
Georgiev and Zlatev [10].

� The vertical exchange. The performance of the vertical exchange along
each vertical grid-line is a parallel task. The number of these tasks is very
large, Nx � Ny � Ns. If the grid is �ne, then the number of these tasks is
becoming enormous, see the example given in x4.3. However, the parallel

7

tasks are not very big and have to be grouped. This is done by trying to
distribute equally the tasks among the assigned processors.

4.2. Running the model on distributed memory computers. Either the
Message Passing Interface (MPI, [12]) or the Parallel Virtual Machine (PVM, [8]) can
be used on parallel computers with distributed memory. We started by using PVM
(see Bendtsen and Zlatev [3]), but only MPI has been used in the last four-�ve years
(see Georgiev and Zlatev, [9] and [10]).

In the MPI implementation, the space domain of the model is divided into several
sub-domains (the number of these sub-domains being equal to the number of the
processors assigned to the job). Then each processor works on its own sub-domain.

Two procedures, a pre-processing procedure and a post-processing procedure, are
performed in the beginning and in the end of the run.

� The pre-processing procedure. In the beginning of the job the input data
(the meteorological data and the emission data) are distributed (consistently
with the sub-domains) to the assigned processors. In this way, not only is
each processor working on its own sub-domain, but it has also access to all
meteorological and emission data which are needed in the run.

� The post-processing procedure. During the run, each processor prepares
output data �les. At the end of the job all these �les have to be collected on
one of the processors and prepared for using them in the future. This is done
by the post-processing procedure.

The use of the pre-processing and post-processing procedures is done in order
to reduce as much as possible the communications during the actual computations.
However, some communications are to be carried out during the computations. The
time needed for these communications is very small (normally, several percent).

Much more details about the runs of several versions of the Danish Eulerian Model
on parallel computers with distributed memory by using MPI tools can be found in
Georgiev and Zlatev, [10].

4.3. Running the code on some more complicated architectures. More
complicated computer architectures are becoming available during the last decade.
An example for such an architecture is the IBM SMP computer. In fact, some ideas,
on which this architecture is built, have been used under the work on the CEDAR
project; see [16]. The IBM SMP consists of several nodes. Every node contains several
processors.

In the architecture available for us, there were two IBM SMP nodes, each of
them containing eight processors. Each node could be considered as a shared memory
computer, while message passing is needed across the nodes.

Some runs on this computer are described here. Again the space domain of the
model is divided into sub-domains (one per each node). The pre-processing procedure
is used to distribute the data among the nodes, while by the post-processing procedure
the data is collected to one of the nodes and prepared for future use. OpenMP
directives are to be used on each node in order to obtain parallel computations within
the node (across the processors of the node).

Both 2-D versions and 3-D versions of the Danish Eulerian Model were run on
this computer. Moreover, 2-D versions discretized on three grids, the (96 � 96) grid,
the (288� 288) grid and the (480� 480) grid, were tested.

It is important to emphasize that we are using only standard parallelization tools
in all these versions of the Danish Eulerian Model; both MPI tools and OpenMP

8

directives Therefore, it should be easy to port this code to other computers of this
type.

More details about the organization of the parallel computations on computers
of this type can be found in Owczarz and Zlatev, [22] and [23].

5. Performance of the Code on Di�erent Types of Computers. Various
versions of the Danish Eulerian Model have been run on three di�erent computers
available at the Danish Computing Centre. Some results obtained in these runs are
given in the following tables:

� Table 5.1 Results obtained with the 3-D version of the Danish Eulerian
Model, which is discretized on a (96� 96� 10) grid, when a shared memory
computer is used. The computer actually used was an SGI Origin 2000.

� Table 5.2 Results obtained with a 2-D version of the Danish Eulerian Model,
which is discretized on a �ne (480 � 480) grid, when a distributed memory
computer is used. The computer actually used was an IBM SP. It should
be emphasized here that the job is so big that it was not possible to run it
on less than 8 processors. Therefore, the speed up and the e�ciency were
calculated by comparing the results obtained when 32 processors are used
with the corresponding results obtained when 8 processors are used.

� Table 5.3 Results obtained with a 2-D version of the Danish Eulerian Model,
which is discretized on a (96 � 96) grid, when an IBM SMP computer (two
nodes, eight processors per node) is used.

The results show that good speed-up can be achieved on di�erent computers when
standard parallelization tools are applied. Much more results can be found in [9], [10],
[22] and [23].

Table 5.1

Computing times (measured in seconds) obtained by using OpenMP on the SGI Origin 2000 com-
puter when the 3-D version of the Danish Eulerian Model is discretized on a (96� 96� 10) grid.

Processors Comp. time Speed-up E�ciency
1 42907 - -
32 2215 19.37 61%

Table 5.2

Computing times (measured in seconds) obtained by using MPI on the IBM SP computer when the
2-D version of the Danish Eulerian Model is discretized on a (480� 480) grid.

Processors Comp. time Speed-up E�ciency
8 54978 - -
32 15998 3.44 86%

Table 5.3

Computing times (measured in seconds) obtained by using the IBM SMP computer (applying
OpenMP within each node and MPI across the nodes) when the 2-D version of the Danish Eu-
lerian Model is discretized on a (96� 96) grid.

Processors Comp. time Speed-up E�ciency
1 5225 - -
16 424 12.32 72%

9

5.1. Scalability of the code. It is important to preserve the e�ciency of the
code when the size of some of the involved arrays is increased (for example, as a result
of re�ning the grid, increasing of the number of chemical compounds, the transition
from the 2-D version to a 3-D version, etc.). This property is often referred to as a
scalability of the code. While such a property is highly desirable (the requirements to
the air pollution codes are permanently increasing), it is by no means clear in advance
whether the code has such a property or not when the modern complicated computer
architectures are used.

Some experiments were performed in an attempt to check the scalability of the
parallel systems discussed in the previous sections. A (288�288) grid was considered
instead of the (96�96) grid considered in the previous sections. Since the space domain
remains unchanged (a 4800 km� 4800 km area containing the whole of Europe) this
corresponds to a transition from cells of size (50 km � 50 km) to cells of size
(16:67 km � 16:67 km); see also Table 1.1. This means that in the re�ned on a
(288 � 288) grid version of the code the number of grid-points was increased by a
factor of 9. The number of chemical species was kept 35.

In the advection part, we had also to decrease the time-stepsize by a factor of
3. Thus, the number of arithmetic operations (or, in other words, the amount of
computational work) is increased by a factor of 27 in the advection part.

There was no need to decrease the time-stepsize in the chemical part. This means
that the number of arithmetic operations (or, in other words, the amount of compu-
tational work) is increased by a factor of 9 in the chemical part.

If a 3-D version of the Danish Eulerian Model is used on a (288� 288� 10) grid,
then the computational work in the horizontal advection di�usion part and in the
chemical part is increased with the same factors, 27 and 9 respectively, compared
with the 3-D version discretized on a (96 � 96 � 10) grid; it should be emphasized,
however, that the 3-D version discretized on a (288� 288� 10) grid is not ready yet.
Furthermore, there is no need to decrease the time-stepsize in the vertical exchange
part either when a version discretized on a (288 � 288 � 10) grid is prepared. This
means that in this part of code the number of arithmetic operations (or, in other
words, the amount of computational work) is increased as in the chemical part (i.e.
by a factor of 9).

The short analysis presented above indicates that if the code of the 2-D Danish
Eulerian Model is scalable, then the computing times should be increased by factors
approximately equal to 27 and 9 in the advection part and the chemical part respec-
tively in the transition from a (96 � 96) grid to the re�ned (288 � 288) grid. For
the code of the 3-D Danish Eulerian Model the increasing factors for the advection
and chemistry part are the same, 27 and 9 respectively, as for the code of the 2-D
Danish Eulerian Model. Furthermore the computing time for the vertical exchange
part should be increased by a factor of 9 in the transition from a (96�96) grid to the
re�ned (288� 288) grid if the code is scalable.

Some runs have been performed in an attempt to establish whether the code is
scalable or not. Results obtained in the transition from a (96�96) grid to the re�ned
(288�288) grid for the 2-D Danish Eulerian Model are given in Table 5.4 The results
given in Table 5.4 indicate that the ratios of the computing times for the re�ned grid
and the coarser grid are close to the expected ratios (see these ratios in Table 5.4).
Our experiments suggest that the application is scalable, but of course this conclusion
is restricted to the problem sizes considered here.

We have also studied what is happening in the transition from the 2-D Danish

10

Table 5.4

Computing times obtained by using a re�ned (288� 288) grid and a coarse (96� 96) grid with the
2-D Danish Eulerian Model. The ratios of the times for the re�ned and coarse grids are given in the
last column. The two codes were run on 16 processors of the IBM SMP computer by using OpenMP
within each node and MPI across the two nodes.

Process (288� 288) (96� 96) Ratio
Advection 1523 63 24.6
Chemistry 2883 288 10.0

Total 6209 424 14.6

Eulerian Model discretized on a (96� 96) grid to the the 3-D Danish Eulerian Model
discretized on a (96�96�10) grid. In this case the computing times for the advection
part and for the chemical part is increased by a factor of 10 when the 3-D version is
used, while the computing time for the vertical exchange part is relevant only for the
3-D version. Some processes (the processes that are relevant for the surface layer)
are common for the 2-D version and the 3-D version. Therefore, it is not very clear
whether the total computing time will be increased by a factor greater than 10 or
not in the transition from the 2-D version to the 3-D version. Some results indicate
that the increasing factor for the total computing time is less than 10. However, more
experiments are needed in order to understand the situation better.

The conclusion (that the code is scalable, which was drawn by using the results
shown in Table 5.4) was further supported:

� by using results obtained in some runs with the more precise version in which
the space domain is discretized on a (480� 480) grid and

� by performing, on the SGI Origin 2000 computer, many runs with the 3-D
version obtained by using a (96�96�10) grid and comparing the results with
the corresponding results calculated by applying the 2-D version obtained by
using a (96� 96).

6. Portability of the code. Some versions of the Danish Eulerian Model have
recently been run on several other parallel computers such as a SUN E10000 shared
memory computer with up to 16 processors at SUN's Global Customer Benchmarking
HPC Center in Beaverton (Oregon) and a CRAY T3E distributed memory computer
with up to 64 processors at EPCC (Edinburgh Parallel Computing Centre). Rather
good results have been achieved without any need to make changes in the code. Some
of these results are given in Table 6.1 -Table 6.4.

The OpenMP version of the 3-D Danish Eulerian Model is used on the SUN
computer (a SUN E10000 server using UltraSPARC-II processors running at 333MHz,
each of them having 4MB of L2 caches) to produce the results given in Table 6.1 and
Table 6.3. The comparison of the results in Table 6.1 with the results in Table
5.1 indicates that the e�ciency of the parallel computation is fully preserved in the
transition from one shared memory computer to another.

The MPI version of the 2-D Danish Eulerian Model applied on a re�ned (480�480)
grid is used on the CRAY T3E computer to produce the results given in Table 6.2.
As mentioned in Section 6, the code is so large that it cannot be run if only a few
processors are used. The results in Table 6.2 show that the MPI version of the re�ned
2-D Danish Eulerian Model runs rather e�ciently not only on the IBM SP computer,
but also on the CRAY T3E computer.

Some runs with the 2-D version of the Danish Eulerian Model applied on a coarser
(96 � 96) grid have also been carried out. Results obtained with the OpenMP code

11

on the SUN computer are given in Table 6.3. The corresponding results obtained by
the MPI code on the CRAY T3E computer and on Macintosh Power PC Cluster are
given in Table 6.4 and Table 6.5. These results con�rm, once again, the statement
that the codes (both the OpenMP codes and the MPI codes) can easily be ported
from one computer to another.

The results could probably be improved by some tuning. Nevertheless, the results
show clearly that one should use standard parallelization tools in the attempt to run
e�ciently the code on di�erent modern supercomputers. This facilitates the transition
from one supercomputer to another.

6.1. MPI versus OpenMP. OpenMP is normally the preferred option when
shared memory machines are used. The obvious reason for this is the fact that it is
much easier to implement an OpenMP version. In many cases the compiler itself will
�nd out where to carry out parallel computations. However, some researchers have
obtained better results by using MPI also on shared memory computers. Therefore it
is necessary to perform some comparisons in order to decide what is the best possibility
when the Danish Eulerian Model is to be run. Such comparisons have been carried
out. Some results are given in Table 6.6.

Table 6.1

Computing times (measured in seconds) obtained by using OpenMP on the SUN computer at Global
Benchmarking Center in Oregon when the 3-D version of the Danish Eulerian Model is discretized
on a (96� 96� 10) grid.

Processors Comp. time Speed-up E�ciency
1 52615 - -
8 6847 7.68 96%
16 3586 14.67 92%

Table 6.2

Computing times (measured in seconds) obtained by using MPI on the CRAY T3E computer at
EPCC when the 2-D version of the Danish Eulerian Model is discretized on a (480� 480) grid.

Processors Comp. time Speed-up E�ciency
32 18306 - -
64 9637 1.90 95%

Table 6.3

Computing times (measured in seconds) obtained by using OpenMP on the SUN computer at Global
Benchmarking Center in Oregon when the 2-D version of the Danish Eulerian Model is discretized
on a (96� 96) grid.

Processors Comp. time Speed-up E�ciency
1 5402 - -
8 743 7.27 91%
16 429 12.59 79%

It is seen that although there are three extra processes which have to be carried out
when the MPI version is run, the total computing time for this version is considerably
smaller (and the speed-up is higher than the speed up obtained when the OpenMP
version is run; the speed-ups being 14.5 and 10.3 respectively). The fact that one

12

Table 6.4

Computing times (measured in seconds) obtained by using MPI on the CRAY T3E computer at
EPCC when the 2-D version of the Danish Eulerian Model is discretized on a (96� 96) grid.

Processors Comp. time Speed-up E�ciency
1 7503 - -
16 506 14.83 93%

Table 6.5

Computing times (measured in seconds) obtained by using MPI on the Macintosh Power PC clus-
ter at the Bulgarian Academy of Sciences when the 2-D version of the Danish Eulerian Model is
discretized on a (96� 96) grid.

Processors Comp. time Speed-up E�ciency
1 5792 - -
8 787 7.36 92%

works with shorter arrays and, thus, the cache memory is better exploited in the MPI
version (because of the domain decomposition) is one of the reasons for the better
performance. However, even in the chemical part, where the chunks used in both
versions are the same, the MPI version performs better.

The above conclusion is only valid for the current implementations. It is clear
that the MPI implementations also scales on shared memory systems. More experi-
mentation and analysis is needed to study and possibly improve the e�ciency of the
OpenMP versions of the Danish Eulerian Model.

7. Applications of the Model. Two examples are given in this section in order
to illustrate the real need for high-speed computations in the area of environmental
modelling. In the �rst application long-term computations were performed in order to
study trends of the air pollution levels over a period of 10 years. The �ne resolution
version of DEM is used in the second example.

7.1. Studying relationships between emissions and pollution levels in

Denmark. A 10-year run of DEM was performed in order to investigate the relation-
ship between the emissions in Europe and the pollution levels. The calculated data
has been used to study the relationship in the Danish area, but a similar study can
be performed for any other country in Europe.

The variation of the emissions in Denmark is shown in Fig. 2. It is seen that
the ammonia emissions in Denmark were not reduced in this period. However, the
variation of the ammonia-ammonium concentrations in Denmark, shown in Fig.3,
indicates a clear trend of reductions. Moreover, the same trend is seen both when
the variation of the measurements taken in three Danish sites are taken into account
and when model results are studied. The fact that the pollution levels are reduced
even when the emissions in Denmark remain the same deserve some explanation.
The results in Table 7.1 show that while, Denmark has not reduced its emissions,
considerable reductions were achieved in two of the neighboring countries. Thus,
the reduction of the pollution levels in Denmark is caused by the reduction of the
transport of ammonia-ammonium to Denmark.

13

Table 6.6

Computing times (measured in seconds) obtained by applying the OpenMP version and the MPI
version when 16 processors of the SGI Origin computer are used. The 2-D version of the Danish
Eulerian Model discretized on a (96� 96) grid is run in this experiment.

Process OpenMP version MPI version
Start 0.1 12.4

Wind + Sinks 5.8 2.2
Advection 101.2 30.1
Chemistry 232.6 161.9

Input-output 54.2 4.1
Communications 0.0 46.9

Preprocessing 0.0 11.1
Post-processing 0.0 12.0

Total time 394.1 270.5

Table 7.1

Ammonia emissions in three European countries.

Country 1989 1998 Reduction
Germany 661 502 24%
The Netherlands 232 171 24%
Denmark 104 104 0%

THE DANISH EMISSIONS

IN THE PERIOD FROM 1989 TO 1998

CHANGES (RELATIVE TO 1989) IN PERCENT

SO2:
NOX:
VOC:
NH3:

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

YEAR

30

50

70

90

110

130

E
M

IS
SI

O
N

 R
A

T
IO

S

Figure 2

14

NH3 + NH4 CONCENTRATIONS

IN THE PERIOD FROM 1989 TO 1998

CHANGES (RELATIVE TO 1989) IN PERCENT

TANGE CALC:
KELDSNOR CALC:
ANHOLT CALC:
The whole of Denmark:

OBS:
OBS:
OBS:

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

YEAR

50

70

90

110

C
O

N
C

E
N

T
R

A
T

IO
N

 R
A

T
IO

S

Figure 3

7.2. Using �ner resolution. For small countries, such as Denmark, the use
of �ner resolution models is important, because this allows us to zoom to prescribed
areas and to see more details in the di�erent parts of the country. Some results are
shown in Fig. 4 and Fig. 5.

The distribution of the nitrogen dioxide pollution in Europe is shown in Fig. 4. It
is seen that the most polluted areas in Europe are parts of England, the Netherlands,
Belgium, Germany and parts of France, the Check Republic and Poland as well as
the Northern part of Italy. Moreover, in the parts of Europe which are not very
polluted one can locate large cities, such as Madrid, Rome, Oslo, Stockholm, Helsinki,
Sct. Petersburg and Moscow, which are large sources of nitrogen pollution (the most
important reason being the fact that pollution from the tra�c is one of the major
sources for nitrogen emissions).

15

Figure 4

The distribution of the nitrogen dioxide concentrations in di�erent parts of Europe
and its surroundings.

The same output data as those used to draw Fig. 4 are also used to draw Fig.
5. Indeed, Fig. 5 could be viewed as a result from zooming in Fig. 4 onto the area
around Copenhagen, the capital of Denmark, and the Swedish city of Malm�o.

16

Figure 5

The nitrogen dioxide concentrations in area around the Danish capital Copenhagen
and the Swedish city Malm�o (the �resund region).

The grid lines are drawn in Fig. 5. This is impossible when the whole space
domain is used. Indeed, Fig. 4 will become complete black if the option for drawing
the grid-lines is not switched o� when results on the whole space domain, containing
230 400 grid-squares, are plotted. The number of grid-squares used in Fig. 5 is 144,
obtained by using only a tiny part, a (12 � 12) sub-grid, of the whole (480 � 480)
grid. At the same time, this area is nearly twice smaller than one grid-square of the
(32 � 32) grids which were commonly used only a few years ago, and are still used
in some models (see, for example, Amann et al. [2] and the EMEP Report 1/98 [7]).
While the size of only one grid-square is 22500 km2 when a (32� 32) grid is applied,
the size of the area of 144 grid-squares used in Fig. 5 is 14400 km2. This means that,
while it will not be possible to see any di�erence in the area shown in Fig. 5 when a

17

coarse (32�32) grid is used, the results from the high resolution model shown in Fig.
5 show clearly that there are several di�erent levels of nitrogen pollution in this area.
This illustrates the great potential power of the high resolution models. However,
there is a price that is to be paid: very large sets of digital data are to be handled
when such models are run.

8. Concluding Remarks and Plans for Future Work. Several conclusions
can be drawn by using the results presented in the previous sections.

The most important conclusion is the use of standard parallelization tools, such
as OpenMP or MPI, simpli�es the transition from one computer to another. This has
been demonstrated in this paper by running a very big application code (i.e. a code
with large memory and execution time requirements on several di�erent computers.

The e�cient use of parallel computers allows the scientists to enlarge the class
of problems that can be successfully handled, i.e. it becomes possible to solve more
problems and bigger problems.

There are still many unresolved problems. Many of the techniques that are cur-
rently used in the Danish Eulerian Model will not be very e�cient or will not work
if the number of available processors is very large (say several hundreds processors or
even several thousands processors). It is nor very clear how to run the model on het-
erogeneous computers and/or on a grid of computers. The solution of these problems
is a very challenging task. We are planning to start soon some work in this direction.

REFERENCES

[1] V. Alexandrov, A. Sameh, Y. Siddique and Z. Zlatev, Numerical integration of chemical
ODE problems arising in air pollution models, Environmental Modelling and Assess-
ment, Vol. 2 (1997), pp. 365{377.

[2] Amann, M., Bertok, I., Cofala, J., Gyarfas, F., Heyes, C., Klimont, Z., Makowski, M., Sch�op,
W. and Syri, S. (1999). Cost-e�ective control of acidi�cation and ground-level ozone.
Seventh Interim Report, IIASA (International Institute for Applied System Analysis),
Laxenburg, Austria.

[3] C. Bendtsen and Z. Zlatev, Running air pollution models on message passing machines,
in: Parallel Virtual Machine and Message Passing Interface (M. Bubak, J. Dongarra and
J. Wasniewski, eds.), pp. 417{426. Springer-Verlag, Berlin, (1997).

[4] A. Bastrup-Birk, J. Brandt, I. Uria and Z. Zlatev, Studying cumulative ozone exposures
in Europe during a seven-year period, Journal of Geophysical Research, Vol. 102 (1997),
pp. 23917{23935.

[5] W. P. Crowley, Numerical advection experiments, Monthly Weather Review, Vol. 96
(1968), pp. 1{11.

[6] I. S. Duff, A. M. Erisman and J. K. Reid, Direct methods for sparse matrices, Oxford
University Press, Oxford-London (1986).

[7] EMEP (1998). Transboundary acidifying air pollution in Europe: Part 1, Estimated disper-
sion of acidifying and eutrofying compounds and comparison with observations. Status
Report 1/98. EMEP MSC-W (Meteorological Synthesizing Centre - West), Norwegian
Meteorological Institute, P. O. Box 43 - Blindern, N-0313 Oslo, Norway.

[8] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam,PVM: Parallel
Virtual Machine, A User's Guide and Tutorial for Networking Parallel Computing. MIT
Press, Cambridge, Massachusetts, 1994.

[9] K. Georgiev and Z. Zlatev, Running an advection-chemistry code on message passing com-
puters, In Recent Advances in Parallel Virtual Machine and Message Passing Interface
(V. Alexandrov and J. Dongarra, eds.), pages 354-363. Springer, Berlin, 1998.

[10] K. Georgiev and Z. Zlatev, Parallel Sparse Matrix Algorithms for Air Pollution Models,
Parallel and Distributed Computing Practices, Vol. 2 (1999), pp. 429-442.

18

[11] M. W. Gery, G. Z. Whitten, J. P. Killus and M. C. Dodge, A photochemical kinetics
mechanism for urban and regional computer modeling, Journal of Geophysical Research,
Vol. 94 (1989), pp. 12925{12956.

[12] W. Gropp, E. Lusk and A. Skjellum, Using MPI: Portable programming with the message
passing interface, MIT Press, Cambridge, Massachusetts (1994).

[13] E. Hairer and G. Wanner, Solving ordinary di�erential equations, II: Sti� and di�erential-
algebraic problems. Berlin, Springer Verlag (1991).

[14] E. Hesstvedt, �. Hov and I. A. Isaksen, Quasi-steady-state approximations in air pol-
lution modelling: comparison of two numerical schemes for oxidant prediction, Interna-
tional Journal of Chemical Kinetics, Vol. 10 (1978), pp. 971{994.

[15] �. Hov, Z. Zlatev, R. Berkowicz, A. Eliassen and L. P. Prahm, Comparison of nu-
merical techniques for use in air pollution models with non-linear chemical reactions,
Atmospheric Environment, Vol. 23 (1988), pp. 967{983.

[16] D. J. Kuck, E. S. Davidson, D. H. Lawrie and A. H. Sameh, Parallel supercomputing today
and the CEDAR approach, Science, 231:967-974, 1986.

[17] J. D. Lambert, Numerical methods for ordinary di�erential equations. New York, Wiley
(1991).

[18] G. I. Marchuk, Mathematical modeling for the problem of the environment, Studies in
Mathematics and Applications, No. 16, North-Holland, Amsterdam (1985).

[19] G. J. McRae, W. R. Goodin and J. H. Seinfeld, Numerical solution of the atmospheric
di�usion equations for chemically reacting
ows, Journal of Computational Physics, Vol.
45 (1984), pp. 1{42.

[20] C. R. Molenkampf, Accuracy of �nite-di�erence methods applied to the advection equation,
Journal of Applied Meteorology, Vol. 7 (1968), pp. 160{167.

[21] WEB-site for OpenMP tools, http://www.openmp.org, 1999.
[22] W. Owczarz and Z. Zlatev, Running a large air pollution model on an IBM SMP computer,

International Journal on Computer Research, to appear.
[23] W. Owczarz and Z. Zlatev, Parallel matrix computations in air pollutionmodelling, Internal

report, National Environmental Research Institute, DK-4000 Roskilde, Denmark, 2000.
[24] D. W. Pepper and A. J. Baker, A simple one-dimensional �nite element algorithm with

multidimensional capabilities, Numerical Heath Transfer, Vol. 3 (1979), 81-95.
[25] D. W. Pepper, C. D. Kern and P. E. Long, Jr., Modelling the dispersion of atmospheric

pollution using cubic splines and chapeau functions, Atmospheric Environment, Vol. 13
(1979), pp. 223{237.

[26] L. K. Peters, C. M. Berkowitz, G. R. Carmichael, R. C. Easter, Fairweather,

G. Ghan, J. Hales, L. Leung, W. Pennell, F. Potra, R. D. Saylor and T. Tsang,

The current state and future direction of Eulerian models in simulating the tropospher-
ical chemistry and transport of trace species: A review. Atmospheric Environment, Vol.
29 (1995), pp. 189{221.

[27] A. Sandu, J. Verwer, J. Bloom, E. Spee and G. Carmichael, Benchmarking sti� ODE
systems for atmospheric chemistry problems: II. Rosenbrock solvers, Atmospheric En-
vironment, Vol. 31 (1997), pp. 3459{3472.

[28] J. Swart and J. Blom, Experience with sparse matrix solvers in parallel ODE software,
Comp. Math. Appl., Vol. 31 (1996), pp. 43{55.

[29] R. A. Willoughby, Sparse matrix algorithms and their relation to problem classes and
computer architecture, In: Large Sparse Sets of Linear Equations (J. K. Reid, ed.), pp.
255-277. Academic Press, London-New York, (1970).

[30] Z. Zlatev, Application of predictor-corrector schemes with several correctors in solving air
pollution problems, BIT, Vol. 24 (1984), pp. 700{715.

[31] Z. Zlatev, Computational methods for general sparse matrices, Kluwer Academic Publish-
ers, Dordrecht-Boston-London (1991).

[32] Z. Zlatev, Computer treatment of large air pollution models, Kluwer Academic Publishers,
Dordrecht-Boston-London (1995).

[33] Z. Zlatev, I. Dimov and K. Georgiev, Three-dimensional version of the Danish Eulerian
Model, Zeitschrift f�ur Angewandte Mathematik und Mechanik, Vol. 76 (1996), pp. 473{
476.

[34] Z. Zlatev, J. Fenger and L. Mortensen, Relationships between emission sources and
excess ozone concentrations, Computers and Mathematics with Applications, Vol. 32,
No. 11 (1996), pp. 101{123.

19

