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ABSTRACT

Many difficulties must be overcome when large-scale air pol-
lution models are treated numerically, because the physical
and chemical processes in the atmosphere are very fast. This
is why it is necessary

1. to use alarge space domain in order to be able to study
long-range transport of pollutants in the atmosphere,

2. to describe adequately all important processes when
an air pollution model is developed and

3. to use fine grids in the discretization of the model.

If all these conditions are taken into account, then the result-
ing computational tasks are huge and the computer treat-
ment of the model is very difficult even when powerful mod-
ern computers are in use. Therefore, the following two major
tasks must be solved:

e fast and sufficiently accurate numerical methods are
to be selected and

e the selected numerical methods should be efficiently
implemented on the available high-speed computers.

The solution of these two important tasks in connection with
a particular large-scale air pollution model, the Danish Eu-
lerian Model, will be discussed in this paper. The use of
standard parallelization tools allows us to achieve good per-
formance when the model is run on different parallel com-
puters. This will be illustrated in the paper by many nu-
merical examples.

Categoriesand Subject Descriptors

G.1.0 [Mathematics of Computing]: General—Parallel
algorithms; G.1.7 [Mathematics of Computing]: Ordi-
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tions—Method of lines; J.2 [Computer Applications]: Phys-
ical Sciences and Engineering— Farth and atmospheric sci-
ences
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1. MATHEMATICAL DESCRIPTION
OF AN AIR POLLUTION MODEL

Mathematical models are indispensable tools when different
air pollution phenomena are to be studied on a large space
domain (say, the whole of Europe). All important physi-
cal and chemical processes must be taken into account in
order to obtain reliable results. This leads to huge compu-
tational tasks, which have to be handled on big high-speed
computers. A short description of the particular air pollu-
tion model used, the Danish Eulerian Model ([54]), will be
given in this section. We shall concentrate our attention on
the mathematical formulation of this model, but a detailed
description of the physical and chemical processes involved
in the models as well as many of the validation tests and
different air pollution studies that were carried out with the
Danish Eulerian Model have been documented in numerous
publications (see, for example, [4], [23], [26], [52], [54], [56],
[57], [58], [59], [60], [62] or [61]; see also the web-site of the
Danish Eulerian Model, [50]).

The Danish Eulerian Model is described by systems of par-
tial differential equations (PDE’s):
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where

e the concentrations of the chemical species are denoted
by ¢ = cs(z,y,2,1),

*u= u(:l:,y,z,t), v = 'u(:l:,y,z,t) and w = ’LU(iB,y,Z,t)
are wind velocities along the coordinate axes,

e K.,K, and K, are diffusion coefficients (K, and K
are non-negative constants, while K, depends both on
the spatial and temporal variables; the algorithms for
calculating this quantity depend on the meteorological
conditions and are normally very complicated),

e the emission sources located in the space domain of
the model are described by terms E, = E;(z,y, 2,t),

® k1s = K1s(Z, Y, 2,t) and k2s = K2s(x, ¥y, 2,t) are deposi-
tion coefficients related to the dry and wet deposition
processes respectively (the wet deposition takes place
only when it rains) and

e the non-linear function Qs(c1,c2,...,¢q) is a common
term for all chemical reactions in which the species s
is involved.

The CBM IV chemical scheme with ¢ = 35 chemical species,
which has been proposed in [20], is actually used in the ver-
sion of the Danish Eulerian Model [54] that will be consid-
ered in this paper, but experiments with two other chemical
schemes, containing ¢ = 56 and ¢ = 168 chemical species,
are carried out at present. It should be mentioned here that
the CBM IV scheme is also used in some other well-known
air pollution models (which is reflected in some of the papers
in [55]).

The Danish Eulerian Model can be used (and has success-
fully been used in many studies) to calculate concentrations
and/or depositions of:

e sulphur compounds,

e nitrogen compounds,

e ammonia-ammonium,

e ozone and

e many hydrocarbons.

2. SPLITTING PROCEDURE

It is difficult to treat the system of PDE’s (1) directly. This
is the reason for using different kinds of splitting in the field
of air pollution modelling. A splitting procedure, based on
ideas proposed in [31], [32] and [12], leads to five sub-models,
representing the five major physical and chemical processes
involved in the long-range transport of air pollutants:

e the horizontal advection,

e the horizontal diffusion,

the chemistry (together with the emission terms),

the dry and wet deposition processes and

the vertical exchange.

These processes are expressed mathematically by the follow-
ing five equations:
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If the model (1) is split into the five sub-models (2) - (6),
then the discretization of the spatial derivatives in the right-
hand-sides of the sub-models will lead to the solution (suc-
cessively at each time-step) of five systems (i = 1,2,3,4,5)
of ordinary differential equations (ODE’s):
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where N = N; X Ny X N, X N; (N, N, and N, are the num-
bers of grid-points along the coordinate axes, while N; = ¢
is the number of chemical species). The functions f,
1 =1,2,3,4,5, depend on the particular discretization meth-
ods used in the numerical treatment of the different sub-
models, while the components of the vector-functions g,
1=1,2,3,4,5, are approximations of the concentrations at
the grid-points of the space domain.

Much more details about the splitting procedure described
by (2) - (7) can be found in [54].



3. NEED FOR EFFICIENT NUMERICAL
METHODS AND HIGH-SPEED

COMPUTERS
The size of any of the five ODE systems (7) is equal to the
product of the number of the grid-points and the number
of chemical species. It is clear, therefore, that it grows very
quickly when the grid-points and/or the chemical species
are increased. This is illustrated in Table 1 for some of the
versions of the Danish Eulerian Model.

Table 1: Numbers of equations in different ver-
sions of the Danish Eulerian Model with 35 chemical
species (the discretization of a horizontal plane of
the space domain is shown in the first column, the
approximate size of the grid-squares when different
grids are used is shown in the second column, the
numbers of equations in the 2-D and 3-D versions
are given in the third and fourth columns respec-
tively; there are not yet 3-D versions for the fine
grids)

Grid Grid-squares 2-D 3-D
(32 x 32) | (150 km x 150 km) | 35840 | 358400
(96 x 96) (50 km x 50 km) 322560 | 3225600

(288 x 288) | (16.7 km x 16.7 km) | 2903040 -
(480 x 480) (10 km x 10 km) 8064000 -

Sometimes it is necessary to perform long simulation pro-
cesses consisting of several hundreds of runs (see, for exam-
ple, [4] or [61]). At present these problems are solved by the
operational two-dimensional version of the Danish Eulerian
Model (see [4], [54] and [61]). In this version the follow-
ing values of the parameters are used: N, = 96, N, = 96,
N, =1, N, = 35. This leads to the treatment of four ODE
systems per time-step; each of them contains 322560 equa-
tions (see Table 1). It is more desirable to use

o finer grids,
e 3-D versions of the model and

e more advanced chemical schemes (some tests with chem-
ical schemes containing more species, N, = 56 and
with N, = 168, have been extensively tested, but these
schemes will not be used in this paper).

The amount of computational work is increased considerably
when any of these three requirements is satisfied.

In 1984 A. Jaffe stated in his paper ” Ordering the universe:
The role of mathematics” ([27]) that,

although the computers are becoming faster and
faster, they will always be too slow, because the
requirements of the scientists are increasing much
faster.

The challenging computational problems, which arise in air
pollution modelling show that this statement remains true
also in the new millennium.

4. THE NUMERICAL ALGORITHMS
SELECTED FOR THE MODEL

The short description of the great numerical difficulties, which
arise when large air pollution models are to be treated in
different important for the society studies, explains why the
search for more efficient numerical methods is continuing.
The need of such methods is emphasized in many investiga-
tions; see, for example, [39] and [54] and some of the papers
in [55]).

It is not necessary to describe in detail all the numerical
methods currently used in the Danish Eulerian Model. The
major numerical methods used to obtain the results pre-
sented in this paper are:

o linear finite element methods in the advection-diffusion
part as well as in the vertical exchange part and

e the Quasi-Steady-State-Approximation (QSSA) algo-
rithm in the chemical part.

The implementation of these two numerical methods in the
Danish Eulerian Model will be discussed in the next two
sub-sections.

4.1 Horizontal advectionand diffusion

The finite elements, which are used at present in the Danish
Fulerian Model, have been applied in connection with air
pollution models in [37] and [38]. More details about this
method can be found in [54] and [19]. The systems of ODEs
(7), which are obtained from (2) after the application of any
finite element semi-discretization in a horizontal grid-plane,
are of the following type:

P%:Hg, geRY, PeRVY, HeR"Y, (8

where N, and N, are the numbers of grid-points along the
horizontal coordinate axes, while N = N, x Ny is the to-
tal number of grid-points in a horizontal grid-plane. The
components of the vector-function g , are as in (7), approxi-
mations of the concentrations at the grid-points of the space
domain. Matrix P is a constant matrix (P = I, where I is
the identity matrix, when finite differences are used). Ma-
trix H depends on the wind velocity vectors (consisting of
values of u and v at the grid-points). This means that in gen-
eral matrix H depends both on the spatial variables and on
the time variable. The matrices P and H are both banded
matrices. Both the structure of these matrices and their ele-
ments depend on the particular finite element method which
has been selected. If splitting to one-dimensional models
is used (as proposed in [32]), then both P and H are tri-
diagonal matrices.

The next problem is to decide how to handle the ODE sys-
tem (8). There are two possibilities:

e to select some explicit integration algorithm and



e to apply an implicit integration algorithm.

The use of an explicit integration algorithm leads to the so-
lution (at every time-step; the number of time-steps is nor-
mally several thousand) of systems of linear algebraic equa-
tions the coefficient matrix of which is P. The fact that P is
a constant matrix can efficiently be exploited. This matrix
can be factorized in the very beginning of the computations,
and the factorization can be used again and again at every
time-step. On the other hand, the use of explicit methods
leads to restrictions on the time-stepsize when the problem
is stiff (see [22], [30] and [54]).

The use of an implicit integration method leads to the so-
lution (again at every time-step) of systems of linear alge-
braic equations the coefficient matrix of which is of the type:
A = P — At@H, where 8 depends on the particular integra-
tion method. This means that matrix A is time-dependent
and, thus, has to be factorized at every time-step. On the
other hand, if an integration method with good stability
properties (L-stable or A-stable method; see [22], [30] and
[54]) is chosen, then no restrictions on the time-stepsize are
imposed for keeping the stability of the computations (how-
ever, the time-stepsize should be sufficiently small in order
to achieve the required accuracy).

Since the ODE system (8) is not very stiff, the use of explicit
methods is more desirable. However, the selected methods
must have reasonably good stability properties. Moreover,
it is necessary to introduce a stability control check. Such
a check, based on ideas described in [56] has been imple-
mented. Norms of the wind velocity vectors (the compo-
nents of which are values of the wind velocities » and v at
the grid-ponts) are used in this check, which can be intro-
duced as follows. Assume that

e U and V are some norms of the vectors whose compo-
nents are values of the wind velocities v and v at the
grid points,

e Az = Ay is the increment used in the discretization
of the horizontal grid-planes,

e At is the time-stepsize, which has to be used at the
current time-step,

e )\* is a parameter which depends on matrix P~'H and

® himag is the absolute stability interval on the imagi-
nary axis (see [56]) of the time-integration algorithm
used in the solution of (8).

Under these assumptions, it should be expected the calcu-
lations at the current time-step to be stable if the following
inequality is satisfied:
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where « is a constant (with 0 < o < 1), which is used as
a precaution factor in order to make the application of (9)
more reliable.

Note that Az and A* are constants when both the spatial
grid and the finite element method are already chosen. The
values of Az that are used in the different versions of the
Danish Eulerian Model are 150 km, 50 km, 16.67 km and
10 km (see Table 1). For the finite elements used in the
Danish Eulerian Model, we have A\* ~ 1.73. This means
that if U4V, which is time-dependent, becomes larger, then
integration methods with a larger h;mq.y must be selected in
an attempt to preserve the stability of the computational
process. Thus, we have to vary the integration methods in
order both to keep the computations stable and to avoid
reductions of the time-stepsize.

The above analysis indicates that we can try to avoid re-
ductions of the time-stepsize by using the stability check
(9) in the following way. Three predictor-correctors schemes
with different stability properties on the imaginary axis (dif-
ferent values of himag; Rimag = 1.65, himag = 2.56 and
himag = 3.26) were selected. The more stable predictor-
corrector schemes (those with larger values of himag) are also
more expensive. Therefore such schemes should be used only
when the norms of the wind velocity vectors are large. If the
norms of the wind velocity vectors are not very large, then
it is more profitable to apply predictor-correctors schemes
which have not very good stability properties (parameter
himag being smaller), but are cheaper.

Strictly speaking, checks of type (9) are valid for constant
wind velocity only. Nevertheless, the check based on (9)
works very well in the efforts both to ensure stable compu-
tations and to avoid reductions of the time-stepsize in the
computations with the Danish Eulerian Model (which have
been run with meteorological data for 20 different years from
1979 to 1998, i.e. the with many different wind velocity
fields).

The diffusion sub-model (3) can be described with a sys-
tem of the same type as (8) when some discretization based
either on finite elements or on finite differences has been ap-
plied. Therefore, it is efficient to combine the advection sub-
model and the diffusion sub-model when the finite elements
are used. Since the advection is the dominating process,
the combined advection-diffusion sub-model can be handled
with the same procedure for stepsize control as that sketched
above.

4.2 Chemistry and deposition

The Quasi-Steady-State-Approximation (QSSA) algorithm,
which is currently used in the chemical part of the Danish
Fulerian Model, has been proposed in connection with air
pollution modelling in [25] for box models (only one grid-
point and only chemical reactions). This algorithm has been
extensively tested for two more realistic examples:

e the generalized Crowley-Molenkampf rotation test pro-
posed and tested in Hov et al. [26] (the original Crowley-
Molenkampf test was simultaneously proposed for test-
ing the accuracy of the numerical algorithms used in
the solution of advection equations in Crowley [6] and
Molenkampf [33]) and

e the two-dimensional air pollution models studied in
Zlatev [54].



It is sufficient to consider the chemical reactions at a sin-
gle grid-point in order to explain how the QSSA algorithm
works. The chemical reactions at the selected grid-point can
be described by an ODE system of the following type:

de
dts =Q3(01,C2,...,Cq), (10)
where ¢, € R, s =1,2,...,4q, are now values of the concen-

trations of the chemical species at the chosen grid-point. It
is convenient to re-write (10) as follows:

de
d_ts = Py(c1,¢2,...,¢q), —Ls(c1,¢2,...,¢q4)Cs, (11)
where the non-negative functions P, and (), are called pro-
duction and loss terms respectively.

Assume that some approximations ¢} to the exact solutions
¢s(ty) of (11) at the point ¢, have already been found. Then
approximations ¢7 ' to the exact solutions ¢ (tn+1) of (11)
at the point t,4+1 = t, + At are calculated by using one
of the following three formulae when the original QSSA is
used:

Py

= I for AtL, > 10, (12)
P n Ps\ _
ottt = 7.t (cs - L_) e Atk (13)

for 0.01 < AtL, < 10,

At = = APy — Lecl) (14)
for AtL, < 0.01.

It is assumed in (12)-(14) that non-linear functions P, and
Qs are calculated for ¢ = t,,. This means that the numerical
integration method, the QSSA, defined by (12)-(14) is ex-
plicit. It is better to incorporate (12) - (14) in an iterative
process (see more details about this in [1]).

It is not very efficient to use the original version of QSSA,
defined by (12) - (14), in a large-scale air pollution model.
Two major computational drawbacks of the original QSSA
arise when it is applied in a large air pollution model.

e Three questions, see (12) - (14), have to be asked in
order to decide which formula should be used at many
grid-points for each of the chemical species when the
original QSSA is used in such models. This leads to a
very long loop with three ”if” statements (in the body

of the loop), which deteriorate its performance. Let
us reiterate here that in the refined version of the 2-D
Danish Eulerian Model the number of grid-points is
230400, while the number of chemical species is 35.

e The value of the exponential function has to be cal-
culate each time when the second formula is selected.
The calculation of a value of the exponential function
is expensive on many computers.

These drawbacks can be removed if we decide to use always
the second formula and if, moreover, we replace the expo-
nential function in (13) with the following approximation:

—AtL 1
i~ . 1
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The substitution of the right-hand-side of (15) in (13) leads
to the following numerical method:

nt1 _ Co 4+ (1 +0.5AtL,))AtP,
ST 14 AtL +0.5(AtL,)?

(16)

The numerical integration method defined by (16) is used
at present as an explicit method (i.e. it is again assumed
that non-linear functions P, and @, are calculated for ¢t =
tn). However, it is normally used as an implicit numerical
method, which can be handled with some iterative method
(it has been mentioned that also the original version of
QSSA is as a rule used as an implicit method).

The improved, by using (15) and (16), QSSA has been ex-
tensively tested in [1]. This method has been used to obtain
the results which will be presented in the following part of
this paper.

Some more advanced methods for the chemical sub-model
have also been implemented in the Danish Eulerian Model
and tested in Alexandrov et al. [1], Georgiev and Zlatev
[19] and Skelboe and Zlatev [44]. The latter methods will,
however, not be used in this paper.

The chemistry sub-model is the most time-consuming part
of the model. Therefore, the problem of finding efficient
methods for this part of a large air pollution model is still
open. The research efforts in this area have been very exten-
sive during the last decade (see, for example, [5], [10], [11],
[24], [28], [34], [40], [41], [42], [43], [46], [47], [48]). Some
methods, which are discussed in publications about general-
purpose numerical algorithms for the solution of ODE sys-
tems (see, for example, [7], [8], [9], [22] and [30]) can also be
appropriate in the efforts to improve the performance of the
chemical module.

Special techniques (as, for example, different implementa-
tions of sparse matrix algorithms) can also be very useful in
the computer treatment of the chemical part of air pollution
models (see [1], [14], [19], [44], [45], [51], and [53]).



The deposition part is treated together with the chemical
part. This part of the model does not cause problems (see
Zlatev [54]).

4.3 Vertical exchange

The discretization along the vertical grid-lines is carried
out by using the same finite elements as in the advection-
diffusion part. The application of any finite element method
(or any method based on the use of finite differences) in the
discretization of the spatial derivatives in (6) leads to the
same system of ODEs as in the advection-diffusion part; i.e.
the resulting system of ODEs is of the same type as (8).

In fact, many such semi-discretized systems, one per each
vertical grid-line, appear. Each of these systems is small (the
number of equations being equal to the number of layers).
However, the number of these systems (equal to the product
Nz x Ny x N;) can be very large. If N, = 480, N, = 480 and
N, = 35, then 8064000 ODE systems have to be treated at
every time-step in the vertical exchange part of the model.
Therefore, one must be careful in the choice of numerical
methods for this sub-model.

It is important to emphasize here that the vertical diffusion
is the dominating process when the sub-model (6) is treated.
This implies that the resulting ODE systems of type (8) are
now stiff. This is why these systems must be solved with im-
plicit time-integration methods. The simple #-method (see,
for example, [30]) seems to work rather efficiently. However,
the use of some time-integration methods of higher order
may result in a further improvement of the efficiency.

5. PREPARING THE CODE FOR RUNS
ON HIGH-SPEED COMPUTERS

It is very important to exploit in the best possible way the
great potential power of the modern supercomputers. This
is a very difficult task when large-scale air pollution models
are to be run, because

e the codes are very big, containing up to several hun-
dreds subroutines,

e a very large amount of input data (meteorological data
and emission data) have to be read and/or interpolated
at every time-step and

e 3 very large amount of output data have to be prepared
and stored for future use.

The preparation of efficient versions of the Danish Eulerian
model for three types of computer architectures:

e parallel computers with shared memory,
e parallel computers with distributed memory and

e more advanced parallel computers utilizing both shared
memory and distributed memory

will be sketched in this section.

5.1 Running the modelon shared memory

computers
OPEN MP ([49]) commands are used when the code is run
on parallel computers with shared memory. The OPEN MP
commands are becoming standard commands. Therefore,
it is easy to get good results on different shared memory
computers when such commands are used.

It is important to identify the parallel tasks and to group
them in an appropriate way when necessary. For the differ-
ent parts of the code this is done in the following way:

e The horizontal advection and diffusion. It can
easily be seen that, after the splitting procedure, the
performance of the horizontal advection can be carried
out independently for every chemical compound (and
for the 3-D version for every layer). This means that
the number of parallel tasks is equal to the number of
chemical compounds (and to the product of the chem-
ical compounds and the layers when the 3-D version
is used). The same is true for the horizontal diffusion.
Moreover, the advection and the diffusion parts can be
treated, as already mentioned in the previous section,
together. Thus, there are many parallel tasks in this
part of the code and, moreover, the parallel tasks are
very big.

e The chemistry and deposition. These two pro-
cesses can be carried out in parallel for every grid-
point. This means that there are many parallel tasks
(the number of parallel tasks is equal to the number of
grid-points), but each task is a small task. Therefore,
the tasks should be grouped in an appropriate way.
This can be done by using chunks. Both the proce-
dure of splitting the data into chunks and the effect of
using chunks are discussed in detail in Georgiev and
Zlatev [19].

e The vertical exchange. The performance of the ver-
tical exchange along each vertical grid-line is a par-
allel task. The number of these tasks is very large,
Nz x Ny x N,. If the grid is fine, then the number
of these tasks is becoming enormous, see the exam-
ple given in §4.3. However, the parallel tasks are not
very big and have to be grouped. This is done by try-
ing to distribute equally the tasks among the assigned
Processors.

5.2 Runningthemodelondistrib utedmemory

computers
Either the Message Passing Interface (MPI, [21]) or the Par-
allel Virtual Machine (PVM, [17]) can be used on parallel
computers with distributed memory. We started by using
PVM (see Bendtsen and Zlatev [3]), but only MPI has been
used in the last four-five years (see Georgiev and Zlatev, [18]
and [19]).

In the MPI implementation, the space domain of the model
is divided into several sub-domains (the number of these
sub-domains being equal to the number of the processors
assigned to the job). Then each processor works on its own
sub-domain.



Two procedures, a pre-processing procedure and a post-
processing procedure, are performed in the beginning and
in the end of the run.

e The pre-processing procedure. In the beginning
of the job the input data (the meteorological data and
the emission data) are distributed (consistently with
the sub-domains) to the assigned processors. In this
way, not only is each processor working on its own sub-
domain, but it has also access to all meteorological and
emission data which are needed in the run.

e The post-processing procedure. During the run,
each processor prepares output data files. At the end
of the job all these files have to be collected on one
of the processors and prepared for using them in the
future. This is done by the post-processing procedure.

The use of the pre-processing and post-processing proce-
dures is done in order to reduce as much as possible the
communications during the actual computations. However,
some communications are to be carried out during the com-
putations. The time needed for these communications is
very small (normally, several percent).

Much more details about the runs of several versions of

the Danish Eulerian Model on parallel computers with dis-

tributed memory by using MPI tools can be found in Georgiev
and Zlatev, [19].

5.3 Running the codeon somemore
complicatedarchitectures

More complicated computer architectures are becoming avail-
able during the last decade. An example for such an archi-
tecture is the IBM SMP computer. In fact, some ideas,
on which this architecture is built, have been used under
the work on the CEDAR project; see [29]. The IBM SMP
consists of several nodes. Every node contains several pro-
Cessors.

In the architecture available for us, there were two IBM SMP
nodes, each of them containing eight processors. Each node
could be considered as a shared memory computer, while
message passing is needed across the nodes.

Some runs on this computer will be described here. Again
the space domain of the model is divided into sub-domains
(one per each node). The pre-processing procedure is used
to distribute the data among the nodes, while by the post-
processing procedure the data is collected to one of the nodes
and prepared for future use. OPEN MP commands are to be
used on each node in order to obtain parallel computations
within the node (across the processors of the node).

Both 2-D versions and 3-D versions of the Danish Eulerian
Model were run of this computer. Moreover, 2-D versions
discretized on three grids, the (96 x 96) grid, the 288 x 288)
grid and the (480 x 480) grid, were tested.

It is important to emphasize that we are using only standard
parallelization tools in all these versions of the Danish Eu-
lerian Model; both MPI tools and OPEN MP instructions.

Therefore, it should be easy to port this code to other com-
puters of this type.

More details about the organization of the parallel compu-
tations on computers of this type can be found in Owczarz
and Zlatev, [35] and [36].

6. RESULTS OBTAINED BY USING THE
COMPUTERS AT THE DANISH COM-
PUTING CENTRE

Different versions of the Danish Eulerian Model have been
run on three different computers available at the Danish
Computing Centre. Some results obtained in these runs are
given in the following tables:

e Table 2. Results obtained with the 3-D version of
the Danish Eulerian Model, which is discretized on a
(96 x 96 x 10) grid, when a shared memory computer is
used. The computer actually used was an SGI Origin
2000.

e Table 3. Results obtained with a 2-D version of the
Danish Eulerian Model, which is discretized on a fine
(480 x 480) grid, when a distributed memory computer
is used. The computer actually used was an IBM SP.
It should be emphasized here that the job is so big
that it was not possible to run it on less than 8 proces-
sors. Therefore, the speed up and the efficiency were
calculated by comparing the results obtained when 32
processors are used with the corresponding results ob-
tained when 8 processors are used.

e Table 4. Results obtained with a 2-D version of the
Danish Eulerian Model, which is discretized on a (96 x
96) grid, when an IBM SMP computer (two nodes,
eight processors per node) is used.

The results show that good speed-up can be achieved on
different computers when standard parallelization tools are
applied. Much more results can be found in [18], [19], [35]
and [36].

Table 2: Computing times (measured in seconds)
obtained by using the SGI Origin 2000 computer
when the 3-D version of the Danish Eulerian Model
is discretized on a (96 x 96 x 10) grid.

Processors | Comp. time | Speed-up | Efficiency
1 42907 - -
32 2215 19.37 61%

7. SCALABILITY OF THE CODE

It is important to preserve the efficiency of the code when
the size of some of the involved arrays is increased (for exam-
ple, as a result of refining the grid, increasing of the number
of chemical compounds, the transition from the 2-D version
to a 3-D version, etc.). This property is often referred to as
a scalability of the code. While such a property is highly
desirable (the requirements to the air pollution codes are



Table 3: Computing times (measured in seconds)
obtained by using the IBM SP computer when the
2-D version of the Danish Eulerian Model is dis-
cretized on a (480 x 480) grid.

Processors | Comp. time | Speed-up | Efficiency
8 54978 - -
32 15998 3.44 86%

Table 4: Computing times (measured in seconds)
obtained by using the IBM SMP computer when
the 2-D version of the Danish Eulerian Model is dis-
cretized on a (96 x 96) grid.

Processors | Comp. time | Speed-up | Efficiency
1 5225 - -
16 424 12.32 2%

permanently increasing), it is by no means clear in advance
whether the code has such a property or not when the mod-
ern complicated computer architectures are in use.

Some experiments were performed in an attempt to check
the scalability of the parallel devices discussed in the previ-
ous sections. A (288 x 288) grid was considered instead of
the (96 x 96) grid considered in the previous sections. Since
the space domain remains unchanged (a 4800 km x 4800 km
area containing the whole of Europe) this corresponds to a
transition from cells of size (50 km X 50 km) to cells of size
(16.67 km x 16.67 km); see also Table 1. This means that
in the refined on a (288 x 288) grid version of the code the
number of grid-points was increased by a factor of 9. The
number of chemical species was kept 35.

In the advection part, we had also to decrease the time-
stepsize by a factor of 3. Thus, the number of arithmetic
operations (or, in other words, the amount of computational
work) is increased by a factor of 27 in the advection part.

There was no need to decrease the time-stepsize in the chem-
ical part. This means that the number of arithmetic opera-
tions (or, in other words, the amount of computational work)
is increased by a factor of 9 in the chemical part.

If a 3-D version of the Danish Eulerian Model is used on
a (288 x 288 x 10) grid when the computational work in
the horizontal advection diffusion part and in the chemical
part will be increased with the same factors, 27 and 9 re-
spectively, compared with the 3-D version discretized on a
(96 x 96 x 10) grid; it should be emphasized, however, that
the 3-D version discretized on a (288 x 288 x 10) grid is
not ready yet. Furthermore, there will be no need to de-
crease the time-stepsize in the vertical exchange part either
when a version discretized on a (288 x 288 x 10) grid is pre-
pared. This means that in this part of code the number
of arithmetic operations (or, in other words, the amount of
computational work) will be increased as in the chemical
part (i.e. by a factor of 9).

Table 5: Computing times obtained by using a re-
fined (288 x 288) grid and a coarse (96 x 96) grid with
the 2-D Danish Eulerian Model. The ratios of the
times for the refined and coarse grids are given in
the last column. The two codes were run on 16 pro-
cessors of the IBM SMP computer.

[ Process | (288 x 288) | (96 x 96) | Ratio ||

Advection 1523 63 24.6
Chemistry 2883 288 10.0
Total 6209 424 14.6

The short analysis presented above indicates that if the code
of the 2-D Danish Eulerian Model is scalable, then the com-
puting times should be increased by factors approximately
equal to 27 and 9 in the advection part and the chemical
part respectively in the transition from a (96 x 96) grid to
the refined (288 x 288) grid. For the code of the 3-D Danish
Eulerian Model the increasing factors for the advection and
chemistry part are the same, 27 and 9 respectively, as for
the code of the 2-D Danish Eulerian Model. Furthermore
the computing time for the vertical exchange part should be
increased by a factor of 9 in the transition from a (96 x 96)
grid to the refined (288 x 288) grid if the code is scalable.

One can also study what is happening in the transition from
the the 2-D Danish Eulerian Model discretized on a (96 x 96)
grid to the the 3-D Danish Eulerian Model discretized on
a (96 x 96 x 10) grid. In this case the computing times
for the advection part an for the chemical part is increased
by a factor of 10 when the 3-D version is used, while the
computing time for the vertical exchange part is relevant
only for the 3-D version. Some processes (the processes that
are relevant for the surface layer are common for the 2-D
version and the 3-D version. Therefore, it is not very clear
whether the total computing time will be increased by a
factor greater than 10 or not in the transition from the 2-
D version to the 3-D version. Some results, compare the
results in Table 6 with the results in Table 8 indicate that
the increasing factor for the total computing time is less
than 10. However, more experiments are needed in order to
understand better the situation.

Some runs have been performed in an attempt to establish
whether the code is scalable or not. Results obtained in the
transition from a a (96 x 96) grid to the refined (288 x 288)
grid for the 2-D Danish Eulerian Model are given in Table 5.
The results given in Table 5 indicate that the ratios of the
computing times for the refined grid and the coarser grid
are close to the expected ratios (see these ratios in Table
5). The conclusion from this experiment is that the code is
scalable.

Many other experiments were carried out. The conclusion
(that the code is scalable, which was drawn by using the
results shown in Table 5) was further supported:

e by using results obtained in some runs with the more
precise version in which the space domain is discretized
on a (480 x 480) grid and



e by performing some runs with the 3-D version obtained
by using a (96 x 96 x 10) grid and comparing the results
with the corresponding results calculated by applying
the 2-D version obtained by using a (96 x 96).

8. PORTABILITY OF THE CODE

Some versions of the Danish Eulerian Model have recently
been run on several other parallel computers (such as a SUN
shared memory computer with up to 16 processors and a
CRAY T3E distributed memory computer with up to 64
processors) at EPCC (Edinburgh Parallel Computing Cen-
tre). Rather good results have been achieved without any
need to make changes in the code. Some results are given
in Table 6 -Table 9.

The OPEN MP version of the 3-D Danish Eulerian Model is
used on the SUN computer to produce the results given in
Table 6. The comparison of the results in Table 6 with the
results in Table 2 indicates that the efficiency of the parallel
computation is fully preserved in the transition from one
shared memory computer to another.

The MPI version of the 2-D Danish Eulerian Model applied
on a refined (480 x 480) grid is used on the CRAY T3E com-
puter to produce the results given in Table 7. As mentioned
in Section 6, the code is so large that it cannot be run if only
a few processors are used. The results in Table 7 show that
the MPI version of the refined 2-D Danish Eulerian Model
runs rather efficiently not only on the IBM SP computer,
but also on the CRAY T3E computer.

Some runs with the 2-D version of the Danish Eulerian
Model applied on a coarser (96 x 96) grid have also been
carried out at EPCC. Results obtained with the OPEN MP
code on the SUN computer are given in Table 8. The cor-
responding results obtained by the MPI code on the CRAY
T3E computer are given in Table 9. These results confirm,
once again, the statement that the codes (both the OPEN
MP codes and the MPI codes) can easily be ported from one
computer to another.

Table 6: Computing times (measured in seconds)
obtained by using the SUN computer at EPCC when
the 3-D version of the Danish Eulerian Model is dis-
cretized on a (96 x 96 x 10) grid.

Processors | Comp. time | Speed-up | Efficiency
1 37565 - -
16 3657 10.27 64%

Table 7: Computing times (measured in seconds)
obtained by using the CRAY T3E computer at
EPCC when the 2-D version of the Danish Eulerian
Model is discretized on a (480 x 480) grid.

Processors | Comp. time | Speed-up | Efficiency
32 18306 - -
64 9637 1.90 95%

Table 8: Computing times (measured in seconds)
obtained by using the SUN computer at EPCC when
the 2-D version of the Danish Eulerian Model is dis-
cretized on a (96 x 96) grid.

Processors | Comp. time | Speed-up | Efficiency
1 4356 - -
16 391 11.14 70%

Table 9: Computing times (measured in seconds)
obtained by using the CRAY T3E computer at
EPCC when the 2-D version of the Danish Eulerian
Model is discretized on a (96 x 96) grid.

Processors | Comp. time | Speed-up | Efficiency
1 7503 - -
16 506 14.83 93%

The results could probably be improved by some tuning.
Nevertheless, the results show clearly that one should use
standard parallelization tools in the attempt to run effi-
ciently the code on different modern supercomputers. This
will facilitate the transition from one supercomputer to an-
other.

9. CONCLUDING REMARKS AND PLANS
FOR FUTURE WORK

The solution of many problems connected with the choice of
numerical algorithms for air pollution models and with par-
allel runs of such models has allowed us to handle efficiently
more problems and bigger problems.

However, the work must be continued, because the require-
ments of the decision-makers are becoming more and more
stringent, which leads to the fact that the computational
problems arising in the area of large-scale air pollution mod-
elling are becoming more and more complicated. Twenty
years ago, in the beginning of 80s, the number of equations
in the semi-discretized problems was about 1000-2000. Now
we should like to solve problems that lead to more than 80
million equations per ODE system in the semi-discretized
models. These are very challenging tasks which still can-
not be solved on the available computers. Therefore it is
necessary to attempt to solve the following problems:

e to improve further the numerical methods used in the
different modules of the models (trying to apply faster,
but sufficiently accurate algorithms) and

e to improve further the performance of the codes when
these are run on different high-speed computers by us-
ing only standard tools, which will allow us to port
easier the codes to new and more powerful architec-
tures when such architectures become available.

While both tasks are in principle simple, the practical solu-
tion of these tasks is very difficult. There are many reasons
for this. Some of them are listed below.



e The air pollution codes are very long (containing many
thousands lines of Fortran statements grouped in many
different subroutines).

e The arrays used in the codes are very long and it is
not always clear how to rearrange the computations in
an optimal way.

e The different modules require the same data (for ex-
ample, the arrays where the concentrations are stored)
ordered in different ways.

e The amount of input and output data is increasing
very quickly when the grids are refined. This causes
difficulties even when modern big computers are avail-
able.

e The output data must be visualized in order to be
able to see different trends and relationships between
different parameters. The needed for the visialization
portions of output data must be found and move to
the computers where the graphic tools are available
by searching for them in enormous data files.

This list can, of course, be continued. However, this is not
necessary. It is much more important to emphasize the fact
that the difficulties that are listed above show clearly that
there exist a lot of open questions and many unresolved until
now tasks in the area of air pollution modelling.

There are a lot of new and interesting problems in air pol-
lution modelling, which were not discussed in this paper.
Some examples for such problems are given below:

e The development of versions of the air pollution mod-
els with local refinement of the grid in prescribed areas
(such a version is discussed in [2]).

e The use of data assimilation in air pollution models;
the development of such versions is discussed in some
of the papers in [55], see also [15] and [16].

e The treatment of some inverse problems (connected
with the question: How to keep the pollution levels in
a given protected area under certain critical levels?).
Some discussion of these possibilities can be found in
Dimov and Zlatev [13].

e The solution of some optimization problems (connected
to the following question: How to minimize the ez-
penses of reducing emissions in order to reduce the
concentrations and deposition in a given area to certain
acceptable levels?). This important topic is discussed
in Dimov and Zlatev [13].

We are planning to study deeply some of the unresolved
tasks, and to try to find some efficient solutions of them in
the near future.

One of the major tools that will be used in the efforts to
resolve some of the challenging tasks that are listed above
is an object-oriented approach in the programming work re-
lated to large-scale air pollution models. An object-oriented

version of the Danish Eulerian Model is under development
(see Antonov [2]). The hope is that the flexibility of the
object-oriented approach, which is applied in this new ver-
sion, will facilitate the solution of many problems which are,
at present, causing great difficulties
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