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Mathematical background of the air pollution

modeling

A system of PDE for calculating the concentrations of a number of

chemical species (pollutants and other components of the air that

interact with the pollutants) in a large 3-D domain (part of the

atmosphere above the studied geographical region).

The main physical and chemical processes (horizontal and vertical

wind, di�usion, chemical reactions, emissions and deposition) should

be adequately represented in the system.

A huge computational task, because of the:

� size of the domain (should be large to reduce the boundary

errors);

� dynamics of the processes { small time-step;

� complexity of the equations { decomposition.
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The Danish Eulerian Model
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+Es+Qs(c1; c2; : : : cq)� (k1s+ k2s)cs; s = 1;2; : : : q :

� cs { the concentrations of the chemical species;

� u; v; w { the wind components along the coordinate axes;

� Kx; Ky; Kz { di�usion coeÆcients;

� Es { the emissions;

� k1s; k2s { dry / wet deposition coeÆcients;

� Qs(c1; c2; : : : cq) { non-linear functions describing the chemical re-

actions between species under consideration (Gery et al. (1989)).
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Splitting into submodels

@c
(1)
s

@t
= �

@(uc
(1)
s )

@x
�

@(vc
(1)
s )

@y
advection

@c
(2)
s

@t
=

@

@x

0
@Kx

@c
(2)
s

@x

1
A+ @

@y

0
@Ky

@c
(2)
s

@y

1
A horizontal

di�usion

@c
(3)
s

@t
= Es+Qs(c

(3)
1 ; c

(3)
2 ; : : : c

(3)
q ) chemistry

& emissions

@c
(4)
s

@t
= �(k1s+ k2s)c

(4)
s deposition

@c
(5)
s

@t
= �

@(wc
(5)
s )

@z
+

@

@z

0
@Kz

@c
(5)
s

@z

1
A vertical transport

Related work: Marchuk (1982), McRae, Goodin and Seinfeld (1984).
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Space discretization and numerical treatment

of the �ve submodels

| Five large ODE systems�:

dg(i)

dt
= f(i)(t; g(i)) ; i = 1;2;3;4;5

g(i) 2 RNx�Ny�Nz�q

f(i) 2 RNx�Ny�Nz�q

� Nx; Ny; Nz { the number of grid-points along the coordinate

axes (di�erent versions);

� q = 35 { the number of chemical species considered in the model;

� g(i) { functions, approximating the concentrations of the di�er-

ent species throughout the spatial domain.

� In general, these systems are simpler. For example, the chemical

submodel splits into Nx �Ny �Nz ODE systems of size q.
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Size of the di�erent versions of the model

Horizontal grid Grid-Squares Size of the grid 3-D version

(32� 32) (150 km� 150 km) 1024 Yes

(96� 96) (50 km� 50 km) 9216 Yes�

(288� 288) (16:7 km� 16:7 km) 82944 No

(480� 480) (10 km� 10 km) 230400 No

� Coarse grid 3-D version with horizontal grid-step 50 km. :

� 5 ODE systems of order 3 225 600 (Nx = Ny = 96 ; Nz = 10);

� The ten layers in vertical direction are non-equidistant (the layers

closer to the surface are thiner);

� With a primary time-step 15 min. more than 20 000 primary

time-steps are to be carried out to cover a time period of 1

month;

� Smaller time-step (150 sec.) must be used in the chemical sub-

model.
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Numerical methods and parallelization techniques

used in the main submodels

� Chemical submodel: An improved version of the QSSA (Quazi

Steady-State Algorithm) (Hesstevedt et al. - 1978)

Native parallel tasks: The calculations in a single grid-point. These

are numerous, but rather small. Chunks are used to create somewhat

coarser tasks in the parallel implementation of this part.

� Advection-di�usion part: Finite elements, followed by predictor-

corrector schemes with several di�erent correctors (Zlatev - 1984)

Native parallel tasks: The calculations for a given pollutant in a

given layer. The tasks are large enough and they are good ground

for shared memory parallelism.
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� Vertical transport: Finite elements, followed by �-method

Native parallel tasks: The calculations for a given pollutant in

a given grid-point of the horizontal grid. Computing the vertical

exchange along each vertical grid-line is a parallel task. The number

of these tasks is Nx �Ny, it is large when the grid is �ne.

Distributed memory parallelizm

The distributed memory parallelization strategy is based on domain

decomposition of the horizontal grid. This strategy induces some

boundary dependencies of the advection-di�usion subproblems, that

require frequent communications. As a result, the complexity of the

advection-di�usion part in the distributed memory version of the

model is a little bit more complex, compared to the shared memory

version.
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Input data sets

Emission data: More or less

constant over a long time period.

Loaded at the beginning, updated

with internal constants if neces-

sary.

 Antropogenic emissions:

SO2, NOx, NH3,

Antr. hydro-carbons

 Natural hydro-carbons

Geographical data: Constant.

Loaded at the beginning.

 Latutudes and longitudes

 Land and sea areas

Meteorological data: Quickly

changing, updated every 6 hours.

New data must be read regularly

after certain number of time steps.

( Horizontal wind

( Precipitations

( Mixing hights

( Temperatures

( Humidities

( Cloud cover

( Surface temperatures

( Vertical wind

( Heat ux

( Surface stress
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Basic conditions of the numerical experiments

� For portability reasons, only standard OpenMP directives and

standard MPI routines are used in the parallel codes for shared

and for distributed memory machines respectively.

� The (96� 96� 10) version of the grid is used in all experiments

on shared and distributed memory machines.

� All experiments are for a time period of 1 month.

� Characteristics of the machines, used in the experiments:

- SUN E-6500 UltraSPARC, 400 MHz (shared memory)

- CRAY T3E-900 (distributed memory)

� Compiler options:

- On the SUN : \-fast -O4 -xarch=v8plusa -xparallel".

- On the T3E: \-O 3 ".

� The results are obtained in multiuser mode on normal priority

batch queues.

10 SciCom'01, Sozopol, June 6{10, 2001



Parallel runs on shared memory computers

3-D OpenMP version of DEM on SUN E6500/400MHz

Stage Time [sec.] /Speed-up

1 proc. 4 proc. 8 proc. 16 proc.

Wind+Sinks 78 80 /1.0 73 /1.1 106 / 0.7

Advection+Di�us. 8885 2393 /3.8 1255 /7.3 797 /11.1

Chemistry+Depos. 25824 6490 /4.0 3523 /7.3 2069 /12.5

Vertical transport 2459 616 /4.0 310 /7.9 172 /14.3

Output operations 214 212 /1.0 217 /1.0 338 / 0.6

Total (SUN) 37890 9792 /3.9 5379 /7.0 3483 /10.9

ORIGIN 2000 42406 11189 /3.8 6257 /6.8 3471 /12.2

Time (in seconds) and speed-up of the main stages of the 3-D OpenMP version

of DEM, (96 � 96 � 10) grid. The results are obtained on a SUN cluster in the

EPCC and on an SGI ORIGIN 2000 at UNI�C, Denmark. Chunks of size 48 are

used in the chemistry part, which appears to be optimal for these machines.
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Parallel runs on distributed memory computers

3-D MPI version of DEM on a CRAY T3E computer

Stage Time [sec.] (% of Total) Scal. factor

8 processors 32 processors T(8)/T(32)

Preprocess 44 ( 0.5 %) 39 ( 1.5 %) 1.1

Wind+Sinks 29 ( 0.3 %) 8.3 ( 0.3 %) 3.5

Advection+Di�us. 2060 (22.6 %) 647 (25.0 %) 3.2

Chemistry+Depos. 5945 (65.2 %) 1548 (59.9 %) 3.8

Vertical transport 502 ( 5.7 %) 126 ( 4.9 %) 4.0

Output operations 21 ( 0.2 %) 5.4 ( 0.2 %) 3.9

Communications 480 ( 5.3 %) 181 ( 7.0 %) 2.7

Postprocess 18 ( 0.2 %) 21 ( 0.8 %) 0.9

Total 9119 ( 100 %) 2585 ( 100 %) 3.5
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In the previous table: Time in seconds and relative weight of the main stages

of the 3-D MPI version of DEM, (96�96�10) grid. The results are obtained on

a CRAY T3E computer at the EPCC by using chunks of size 24 in the chemistry

part.

The ratio between the times on 8 and 32 processors is given in the last column.

Due to insuÆcient memory, there are no experiments on less than 8 processors.

In the next �gure: Scalability of the main computational stages and

the whole MPI implementation of the 3-D DEM on the T3E. The speed-ups are

calculated under the assumption that it is 8 on 8 processors.
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Scalability of the 3-D MPI code on the T3E
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Times and performance of the 2-D coarse-grid

codes on the SUN cluster

no. of OpenMP code MPI code

proc. Time Speed Time Speed

[s] -up [s] -up

1 4356 5067

4 1199 3.6 1293 3.9

8 636 6.9 629 8.0

16 391 11.2 363 14.0

Time and speed-up of the OpenMP and the MPI versions of DEM

for (96� 96� 1) grid on the SUN HPC cluster at EPCC.
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Scalability of the MPI code for the (96�96�1) grid

sp2 T3E

3216 48

16

32

48

speed-up

processors
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Times and performance of the 3-D code

SUN E3500 SGI Origin-2000

Stage Time Part [%] Time Part [%]

[s] of Total [s] of Total

W+S (Input) 105 0.3 % 59 0.1 %

Adv.+Di�. 8602 22.9 % 10458 21.1 %

Chem.+Dep. 25381 67.6 % 35232 71.2 %

Vertical tr. 3307 8.8 % 3465 7.0 %

Output 202 0.5 % 277 0.6 %

Total 37565 100 % 49483 100 %

Time pro�le for sequential runs of the 3D version of DEM on two

shared-memory supercomputers
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